Skip to main content
Log in

Comparative study on compatibility of graphene-based catalysts with energetic ingredients by using DSC and VST methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To demonstrate the discrepancies of the international standards on compatibility evaluation for energetic additives, a comparative study on compatibility of three typical graphene-based catalysts with common energetic ingredients has been done by using DSC and VST methods. Based on some unusual findings, further suggestions are proposed on improvement in the compatibility evaluation standard. The compatibility results from DSC and VST methods for HMX/GT-Ni, HMX/GC-Cu, AP/GC-Cu, AP/GT-Ni and RDX/GC-Cu systems are contradictory. The major discrepancies between DSC and VST results are caused by combination of contradictory nature of stabilization and catalytic effects of these additives on the corresponding energetic ingredients. It has been shown that the HMX/GC-Ni, HMX/GT-Ni, AP/GT-Ni, NC/GC-Ni, NC/GT-Ni, NC/GT-Cu and NC/GA-Cu mixtures have good compatibility, and the RDX/GC-Ni, AP/GC-Ni and NC/GC-Cu mixtures have moderate compatibility. In general, the copper-based additives even under the stabilization of graphene oxide are not so compatible with nitramine oxidizers and AP. These results indicate that each of the evaluation standards on compatibility has its own feature and limitation. The DSC standard is probably not suitable for the evaluation of the compatibility of GC-Ni, GC-Cu, GT-Ni, GT-Cu and GA-Cu with energetic ingredients. The compatibility assessment cannot simply rely on the available standards, and more comprehensive evaluation procedures need to be established according to the nature of the materials evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EMs:

Energetic materials

DSC:

Differential scanning calorimetry

VST:

Vacuum stability test

TG:

Thermogravimetric method

NC:

Nitrocellulose

HMX:

Cyclotetramethylene tetranitroamine

AP:

Ammonium perchlorate

AN:

Ammonium nitrate

RDX:

Cyclotrimethylenetrinitramine

GO:

Graphene oxide

GT-Ni:

GO-TAG-Ni, TAG is triaminoguanidine

GT-Cu:

GO-TAG-Cu, TAG is triaminoguanidine

GC-Cu:

GO-CHZ-Cu, CHZ is carbohydrazide

GC-Ni:

GO-CHZ-Ni, CHZ is carbohydrazide

GA-Cu:

GO-ATRZ-Cu, ATRZ is azo-triazole

R :

The volume of incremental product gases of the mixture

V C :

The volume of product gases of the mixture

V A :

The volume of gaseous products of pure energetic components

V B :

The volume of gaseous products of contact materials

ΔT p :

The change in decomposition peak temperature

T p :

The decomposition peak temperature of materials

References

  1. Bouma RHB, Griffiths TT, Tuukkanen IM. The development of a future chemical compatibility standard for energetic materials. Thermochim Acta. 2019;676:13–9.

    Article  CAS  Google Scholar 

  2. Li X-Z, Bi F-Q, Lian P, Li H, Liu G-Q, Wang B-Z. Computation of energetic characteristics of CMDB propellant containing DNTN and compatibility. Chin J Energ Mater. 2018;26(4):311–5.

    Google Scholar 

  3. Lavoie J, Petre C-F, Durand S, Dubois C. Stability and performance of gun propellants incorporating 3,6-dihydrazino-s-tetrazine and 5-aminotetrazolium nitrate. J Hazard Mater. 2019;363:457–63.

    Article  CAS  Google Scholar 

  4. Guo W, Han Z, Lin Q, Wang B. Pre-formulation compatibility studies of 5-amino-1H-tetrazole nitrate with several typical materials by thermal and non-thermal techniques. Cent Eur J Energ Mater. 2018;15(1):100–14.

    Article  CAS  Google Scholar 

  5. Fidanovski B, Dimic M, Milojkovic A. Determination of chemical stability of propellants using the vacuum stability test method. Sci Tech Rev. 2016;66(1):18–22.

    Article  CAS  Google Scholar 

  6. Myburgh A. Standardization on stanag test methods for ease of compatibility and thermal studies. J Therm Anal Calorim. 2006;85(1):135–9.

    Article  CAS  Google Scholar 

  7. Yan Q-L, Li X-J, Zhang L-Y, Li J-Z, Li H-L, Liu Z-R. Compatibility study of trans-1,4,5,8-tetranitro-1,4,5,8-tetraazadecalin (TNAD) with some energetic components and inert materials. J Hazard Mater. 2008;160(2–3):529–34.

    Article  CAS  Google Scholar 

  8. Yousef MA, Hudson MK, Berry BC. Study on the compatibility of azo-tetrazolate high-energy materials using DSC. J Therm Anal Calorim. 2018;133(3):1481–90.

    Article  CAS  Google Scholar 

  9. Li D-H, Li L-J, Lan G-C, Chen Y, Jin S-H, Chen S-S. Molecular dynamics simulation on compatibility of SBS toughened paraffin wax/plasticizer blends. Chin J Energ Mater. 2018;26(3):223–9.

    Google Scholar 

  10. Yan Q-L, Zhao FQ, Kuo KK, Zhang X-H, Zeman S, DeLuca LT. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions. Prog Energy Combust Sci. 2016;57:75–136.

    Article  Google Scholar 

  11. Usman M, Wang L, Yu H, Haq F, Haroon M, Ullah RS, Khan A, Fahad S, Nazir A, Elshaarani T. Recent progress on ferrocene-based burning rate catalysts for propellant applications. J Organomet Chem. 2018;872:40–53.

    Article  CAS  Google Scholar 

  12. Wang Y-L, Zhao F-Q, Ji Y-P, Yan Q-L, Yi J-H, Xu S-Y, Luo Y, Lu X-M. Synthesis and thermal behaviors of 1,8-dihydroxy-4,5-dinitroanthraquinone barium salt. J Anal Appl Pyrolysis. 2014;105:295–300.

    Article  CAS  Google Scholar 

  13. Yan Q-L, Gozin M, Zhao FQ, Cohen A, Pang S-P. High energetic compositions based on functionalized carbon nanomaterials. Nanoscale. 2016;8:4799–851.

    Article  CAS  Google Scholar 

  14. Cohen A, Yang Y-Z, Yan Q-L, Shlomovich A, Petrutik N, Burstein L, Pang S-P, Gozin M. Highly thermostable and insensitive energetic hybrid coordination polymers based on graphene oxide–Cu(II) complex. Chem Mater. 2016;28(17):6118–26.

    Article  CAS  Google Scholar 

  15. Wang Y-L, Yan Q-L, An T, Chen B, Ji Y-P, Wang L, Zhao F-Q. Unraveling the effect of anthraquinone metal salts as wide-range plateau catalysts to enhance the combustion properties of solid propellants. Cent Eur J Energ Mater. 2018;15(2):376–90.

    Article  CAS  Google Scholar 

  16. Yan Q-L. Comments on criteria for evaluation of combustion catalysts in solid propellants. Chin J Energ Mater. 2019;27(4):266–9.

    Google Scholar 

  17. Zhang X-X, He W, Chen S-W, Lyu J-Y, Guo Z, Gozin M, Yan Q-L. Tuning the crystal morphology and thermal behavior of graphene-templated energetic bis-tetrazole copper coordination polymers. Adv Compos Hybrid Mater. 2019;2:289–300.

    Article  CAS  Google Scholar 

  18. An T, He W, Chen S-W, Zuo B-L, Qi X-F, Zhao FQ, Luo Y-J, Yan Q-L. Thermal behavior and thermolysis mechanisms of AP under the effects of GO-doped complexes of triaminoguanidine. J Phys Chem C. 2018;12(2):26956–64.

    Article  Google Scholar 

  19. Chen S-W, He W, Luo C-J, An T, Chen J, Yang Y, Liu P-J, Yan Q-L. Thermal behavior of graphene oxide and its stabilization effects on transition metal complexes of triaminoguanidine. J Hazard Mater. 2019;368:404–11.

    Article  CAS  Google Scholar 

  20. Zhang CM, Fu XL, Yan Q-L, Li JZ, Fan XZ, Zhang GF. Study on the thermal decomposition mechanism of graphene oxide functionalized with triaminoguanidine (GO-TAG) by molecular reactive dynamics and experiments. RSC Adv. 2019;9:33268–81.

    Article  CAS  Google Scholar 

  21. Zhang XX, Lyu J-Y, He W, Chen S-W, Yang ZJ, Yan Q-L. Graphene templated energetic 5,5′-bistetrazole coordination polymers and their catalytic effects on thermal decomposition of RDX and AP. Chin J Energ Mater. 2019;27(9):749–58.

    Google Scholar 

  22. Huang B, Xue ZH, Chen S, Chen J, Li XJ, Xu KZ, Yan Q-L. Stabilization of ε-CL-20 crystals by a minor interfacial doping of polydopamine-coated graphene oxide. Appl Surf Sci. 2020;510:145454.

    Article  CAS  Google Scholar 

  23. Yan Q-L, Li X-J, Wang Y, Zhang W-H, Zhao F-Q. Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitramines (I): the effect of heat and mass transfer to the burning characteristics. Combust Flame. 2009;156(3):633–41.

    Article  CAS  Google Scholar 

  24. Yan Q-L, Liu P-J, He A-F, Zhang J-K, Ma Y, Hao H-X, Zhao F-Q, Gozin M. Photosensitive but mechanically insensitive graphene oxide–carbohydrazide–metal hybrid crystalline energetic nanomaterials. Chem Eng J. 2018;338:240–7.

    Article  CAS  Google Scholar 

  25. He W, Guo J-H, Cao C-K, Liu X-K, Lv J-Y, Chen S-W, Liu PJ, Yan Q-L. Catalytic reactivity of graphene oxide stabilized transition metal complexes of triaminoguanidine on thermolysis of RDX. J Phys Chem C. 2018;122:14714–24.

    Article  CAS  Google Scholar 

  26. Xiao Y-Y, Jin B, Peng R-F, Zhang Q-C, Liu Q-Q, Chu S-J, Guo Z-C. Thermal decomposition of CL-20 via a self-modified dynamic vacuum stability test. J Therm Anal Calorim. 2017;128:1833–40.

    Article  CAS  Google Scholar 

  27. Luo L-Q, Jin B, Xiao Y-Y, Zhang Q-C, Chai Z-H, Huang Q, Chu S-J, Peng R-F. Study on the isothermal decomposition kinetics and mechanism of nitrocellulose. Polym Test. 2019;75:337–43.

    Article  CAS  Google Scholar 

  28. Brill TB, Brush PJ, Patil DG. Thermal decomposition of energetic materials 60. Major reaction stages of a simulated burning surface of NH4ClO4. Combust Flame. 1993;94(1–2):70–6.

    Article  CAS  Google Scholar 

  29. Manelis GB, Nazin GM, Rubtsov YI, Strunin AA. Thermal decomposition and combustion of explosives and propellants. New York: Taylor & Francis; 2003.

    Book  Google Scholar 

  30. Wang HY, Jacob RJ, Delisio JB, Zachariah MR. Assembly and encapsulation of aluminum NPs within AP/NC matrix and their reactive properties. Combust Flame. 2017;180:175–83.

    Article  CAS  Google Scholar 

  31. Jacobs PWM, Ng WL. Thermal decomposition of ammonium perchlorate single crystals. J Solid State Chem. 1974;4:305.

    Google Scholar 

  32. Jacobs PWM, Pearson GS. The thermal decomposition of ammonium perchlorate (i) introduction experimental analysis of gaseous products and thermal decomposition experiments. Combust Flame. 1969;13:419.

    Article  CAS  Google Scholar 

  33. Chen S, An T, Gao Y, Lyu J-Y, Tang D-Y, Zhang X-X, Zhao F, Yan Q-L. Gaseous products evolution analyses for catalytic decomposition of AP by graphene-based additives. Nanomaterials. 2019;9:801. https://doi.org/10.3390/nano9050801.

    Article  CAS  PubMed Central  Google Scholar 

  34. Dong X-F, Yan Q-L, Zhang X-H, Cao D-L, Xuan C-L. Effect of potassium chlorate on thermal decomposition of cyclotrimethylenetrinitramine (RDX). J Anal Appl Pyrolysis. 2012;93:160–4.

    Article  CAS  Google Scholar 

  35. Jiang Z, Li S-F, Zhao F-Q, Chen P, Yin C-M, Li S-W. Effect of nanometal powder on the thermal decomposition characteristics of HMX. J Propuls Technol. 2002;23(3):258–61.

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant Number: 51776176) and the Fundamental Research Funds from Chinese H863 Plan with Project Code of 2018KC020167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Long Yan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Chen, S., Liu, X. et al. Comparative study on compatibility of graphene-based catalysts with energetic ingredients by using DSC and VST methods. J Therm Anal Calorim 144, 1139–1149 (2021). https://doi.org/10.1007/s10973-020-09646-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09646-3

Keywords

Navigation