Skip to main content
Log in

In situ and ex situ studies on thermal decomposition process of hydromagnesite Mg5(CO3)4(OH)2·4H2O

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We investigated crystal structure and the local structure changes during the thermal decomposition of hydromagnesite by using in situ high-temperature XRD and ex situ high-temperature X-ray total scattering measurements. Hydromagnesite displayed anisotropic thermal expansion up to 220 °C. The a and c lattice parameters exhibited an increase trend with temperature, whereas the b lattice parameter and β angle did not show a regular trend with temperature. The relative expansion between 25 and 220 °C followed the c/c0 > a/a0\(\gg\)b/b0. At 260 °C, the a, b, and c lattice parameters significantly decreased. Above 280 °C, hydromagnesite underwent a structural collapse with dehydration and dehydroxylation reactions, but was never accompanied by nucleation and growth of crystal phases up to 425 °C. During the thermal decomposition from hydromagnesite to periclase, the Mg atoms maintained the octahedral coordination environments in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Katsura T, Ito E. Melting and subsolidus phase relations in the MgSiO3–MgCO3 system at high pressures: implications to evolution of the Earth's atmosphere. Earth Planet Sci Lett. 1990;99:110–7.

    CAS  Google Scholar 

  2. Martinez I, Chamorro Peréz EM, Matas J, Gillet P, Vidal G. Experimental investigation of silicate–carbonate system at high pressure and high temperature. J Geophys Res. 1998;103:5143–63.

    CAS  Google Scholar 

  3. Isshiki M, Irifune T, Hirose K, Ono S, Ohishi Y, Watanuki T, Nishibori E, Takata M, Sakata M. Stability of magnesite and its high-pressure form in the lowermost mantle. Nature. 2004;427:60–3.

    CAS  PubMed  Google Scholar 

  4. Sandengen K, Josang LO, Kaasa B. Simple method for synthesis of magnesite (MgCO3). Ind Eng Chem Res. 2008;47:1002–4.

    CAS  Google Scholar 

  5. Dasgupta R, Hirschmann MM. The deep carbon cycle and melting in Earth's interior. Earth Planet Sci Lett. 2010;298:1–13.

    CAS  Google Scholar 

  6. Rohrbach A, Schmidt MW. Redox freezing and melting in the Earth's deep mantle resulting from carbon–iron redox coupling. Nature. 2011;472:209–12.

    CAS  PubMed  Google Scholar 

  7. Solopova NA, Dubrovinsky L, Spivak AV, Litvin YA, Dubrovinskaia N. Melting and decomposition of MgCO3 at pressures up to 84 GPa. Phys Chem Miner. 2014;42:73–81.

    Google Scholar 

  8. Sayles FL, Fyfe WS. The crystallization of magnesite from aqueous solution. Geochim Cosmochim Acta. 1973;37:87–99.

    CAS  Google Scholar 

  9. Königsberger E, Königsberger L, Gamsjager H. Lowtemperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O. Geochim Cosmochim Acta. 1999;63:3105–19.

    Google Scholar 

  10. Pokrovsky OS, Schott J, Thomas F. Processes at the magnesium-bearing carbonates/solution interface. I. A surface speciation model for magnesite. Geochim Cosmochim Acta. 1999;63:863–80.

    CAS  Google Scholar 

  11. Xiong YL, Lord AS. Experimental investigations of the reaction path in the MgO–CO2–H2O system in solutions with various ionic strengths, and their applications to nuclear waste isolation. Appl Geochem. 2008;23:1634–59.

    CAS  Google Scholar 

  12. Hänchen M, Prigiobbe V, Baciocchi R, Mazzotti M. Precipitation in the Mg-carbonate system—effects of temperature and CO2 pressure. Chem Eng Sci. 2008;63:1012–28.

    Google Scholar 

  13. Sadly GD, Jordan G, Schott J, Oelkers EH. Magnesite growth rate as a function of temperature and saturation state. Geochim Cosmochim Acta. 2009;73:5646–57.

    Google Scholar 

  14. Bénézeth P, Saldi GD, Dandurand JL, Schott J. Experimental determination of the solubility product of magnesite at 50 to 200 °C. Chem Geol. 2011;286:21–31.

    Google Scholar 

  15. Chaka AM, Felmy AR. Ab initio thermodynamic model for magnesium carbonates and hydrates. J Phys Chem A. 2014;118:7469–88.

    CAS  PubMed  Google Scholar 

  16. Qafoku O, Dixon DA, Rosso KM, Schaef HT, Bowden ME, Arey BW, Felmy AR. Dynamics of magnesite formation at low temperature and high pCO2 in aqueous solution. Environ Sci Technol. 2015;49:10736–44.

    CAS  PubMed  Google Scholar 

  17. Perchiazzi N, Merlino S. The malachite-rosasite group: crystal structures of glaukosphaerite and pokrovskite. Eur J Mineral. 2006;18:787–92.

    CAS  Google Scholar 

  18. Back ME, Mandarino JA. Fleischer's glossary of mineral species. Tucson: Mineralogical Record Inc; 2008.

    Google Scholar 

  19. Frost RL, Bahfenne S, Graham J, Reddy BJ. The structure of selected magnesium carbonate minerals - A near infrared and mid-infrared spectroscopic study. Polyhedron. 2008;27:2069–76.

    CAS  Google Scholar 

  20. Beinlich A, Austrheim H. In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts. Chem Geol. 2012;332:32–44.

    Google Scholar 

  21. Hopkinson L, Kristova P, Rutt K, Cressey G. Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing solutions. Geochim Cosmochim Acta. 2012;76:1–13.

    CAS  Google Scholar 

  22. Kristova P, Hopkinson LJ, Rutt KJ, Hunter HMA, Cressey G. Carbonate mineral paragenesis and reaction kinetics in the system MgO-CaO-CO2-H2O in presence of chloride or nitrate ions at near surface ambient temperatures. Appl Geochem. 2014;50:16–24.

    CAS  Google Scholar 

  23. Zhang Z, Zheng Y, Ni Y, Liu Z, Chen J, Liang X. Temperature- and pH-dependent morphology and FT−IR analysis of magnesium carbonate hydrates. J Phys Chem B. 2006;110:12969–73.

    CAS  PubMed  Google Scholar 

  24. Morgan B, Wilson SA, Madsen IC, Gozukara YM, Habsuda J. Increased thermal stability of nesquehonite (MgCO3·3H2O) in the presence of humidity and CO2: implications for low-temperature CO2 storage. Int J Greenhouse Gas Control. 2015;39:366–76.

    CAS  Google Scholar 

  25. Davies PJ, Bubela B. The transformation of nesquehonite into hydromagnesite. Chem Geol. 1973;12:289–300.

    CAS  Google Scholar 

  26. Hopkinson L, Rutt K, Cressey G. The transformation of nesquehonite to hydromagnesite transition in the system MgO–CaO–H2O–CO2: an experimental spectroscopic study. J Geol. 2008;116:387–400.

    CAS  Google Scholar 

  27. Langmuir D. Stability of carbonates in the system MgO−CO2–H2O. J Geol. 1965;73:730–54.

    CAS  Google Scholar 

  28. Di Lorenzo F, Rodriguez-Galan RM, Prieto M. Kinetics of the solvent-mediated transformation of hydromagnesite into magnesite at different temperatures. Mineral Mag. 2014;78:1363–72.

    Google Scholar 

  29. Farhang F, Oliver TK, Rayson M, Bren G, Stockenhuber M, Kennedy E. Experimental study on the precipitation of magnesite from thermally activated serpentine for CO2 sequestration. Chem Eng J. 2016;303:439–49.

    CAS  Google Scholar 

  30. Botha A, Strydom CA. Preparation of a magnesium hydroxy carbonate from magnesium hydroxide. Hydrometallurgy. 2001;62:175–83.

    CAS  Google Scholar 

  31. Haurie L, Fernandez AI, Velasco JI, Chimenos JM, Cuesta JML, Espiell F. Synthetic hydromagnesite as flame retardant Evaluation of the flame behaviour in a polyethylene matrix. Polym Degrad Stab. 2006;91:989–94.

    CAS  Google Scholar 

  32. Vagvolgyi V, Frost RL, Hales M, Locke A, Kristof J, Horvath E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    CAS  Google Scholar 

  33. Hollingbery LA, Hull TR. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta. 2010;509:1–11.

    CAS  Google Scholar 

  34. Hollingbery LA, Hull TR. The thermal decomposition of natural mixtures of huntite and hydromagnesite. Thermochim Acta. 2012;528:45–52.

    CAS  Google Scholar 

  35. Bhattacharjya D, Selvamani T, Mukhopadhyay I. Thermal decomposition of hydromagnesite effect of morphology on the kinetic parameters. J Therm Anal Calorim. 2012;107:439–45.

    CAS  Google Scholar 

  36. Unluer C, Al-Tabbaa A. Characterization of light and heavy hydrated magnesium carbonates using thermal analysis. J Therm Anal Calorim. 2014;115:595–607.

    CAS  Google Scholar 

  37. Ren HR, Chen Z, Wu YL, Yang MD, Chen J, Hu HS, Liu J. Thermal characterization and kinetic analysis of nesquehonite, hydromagnesite, and brucite, using TG-DTG and DSC techniques. J Therm Anal Calorim. 2014;115:1949–60.

    CAS  Google Scholar 

  38. Sawada Y, Uematsu K, Mizutani N, Kato M. Thermal decomposition of hydromagnesite 4MgCO3-Mg(OH)2–4H2O under different partial pressures of carbon dioxide. Thermochim Acta. 1978;27:45–59.

    CAS  Google Scholar 

  39. Sawada Y, Yamaguchi J, Sakurai O, Uematsu K, Mizutani N, Kato M. Thermal decomposition of basic magnesium carbonates under high-pressure gas atmospheres. Thermochim Acta. 1979;32:277–91.

    CAS  Google Scholar 

  40. Padeste C, Oswald HR, Reller A. The thermal behavior of pure and nickel-doped hydromagnesite in different atmospheres. Mater Res Bull. 1991;26:1263–8.

    CAS  Google Scholar 

  41. Li Q, Ding Y, Yu GH, Li C, Li FQ, Qian YT. Fabrication of light-emitting porous hydromagnesite with rosette-like architecture. Solid State Commun. 2003;125:117–20.

    CAS  Google Scholar 

  42. Ballirano P, De Vito C, Mignardi S, Ferrini V. Phase transitions in the Mg-CO2-H2O system and the thermal decomposition of dypingite, Mg5(CO3)4(OH)2·5H2O: implications for geosequestration of carbon dioxide. Chem Geol. 2013;340:59–67.

    CAS  Google Scholar 

  43. Larson AC, Von Dreele RB. General Structure Analysis System, (GSAS). Los Alamos National Laboratory Report LAUR 86–784; 2004.

  44. Toby BH. EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr. 2004;34:210–3.

    Google Scholar 

  45. Akao M, Iwai S. The hydrogen bonding of hydromagnesite. Acta Crystallogr B. 1977;33:1273–5.

    Google Scholar 

  46. Qui X, Thompson JW, Billinge SJL. PDFgetX2: A GUI driven program to obtain the pair distribution function from X-ray powder diffraction data. J Appl Crystallogr. 2004;37:678.

    Google Scholar 

  47. Farrow CL, Juhas P, Liu JW, Bryndin D, Božin ES, Bloch J, Proffen T, Billinge SJL. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J Phys Condens Matter. 2007;19:335219.

    CAS  PubMed  Google Scholar 

  48. Wang ML, Shi GH, Qin JQ, Bai Q. Thermal behaviour of calcite-structure carbonates: a powder X-ray diffraction study between 83 and 618K. Eur J Mineral. 2018;30:939–49.

    CAS  Google Scholar 

  49. Ballirano P, De Vito C, Ferrini V, Mignardi S. The thermal behaviour and structural stability of nesquehonite, MgCO3⋅3H2O, evaluated by in situ laboratory parallel-beam X-ray powder diffraction: New constraints on CO2 sequestration within minerals. J Hazard Mater. 2010;178:522–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed under the Shared Use Program of JAEA Facilities (Proposal No. 2018A-E06) with the approval of Nanotechnology Platform project supported by the Ministry of Education, Culture, Sports, Science and Technology (Proposal No. A-18-AE-0005). The synchrotron radiation experiments were performed at JAEA beamline BL14B1 in SPring-8 (Proposal No. 2018A3633). The work was partially supported by a Grant-in-Aid for Scientific Research (C) from the Japan Society for the Promotion of Science (Project No. 17K05702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen-ichiro Yamamoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Gi., Kyono, A., Sano, Y. et al. In situ and ex situ studies on thermal decomposition process of hydromagnesite Mg5(CO3)4(OH)2·4H2O. J Therm Anal Calorim 144, 599–609 (2021). https://doi.org/10.1007/s10973-020-09618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09618-7

Keywords

Navigation