Skip to main content
Log in

Thermal management of modern electric vehicle battery systems (MEVBS)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The operating temperature of Li-ion batteries used in modern electric vehicles should be maintained within an allowable range to avoid thermal runaway and degradation. One of the most challenging issues faced by the automobile industry is providing proper thermal management mechanisms to avert thermal runaways. In this work, the effect of operating parameters like volumetric heat generation (q), conduction–convection parameter (ζcc), Reynolds number (Re), and Aspect ratio (Ar) on the thermal behavior of a prismatic battery cell is investigated numerically considering a realistic conjugate condition at the battery cell and coolant interface. Air is selected as the coolant that carries the heat generated uniformly in the modern battery cell during charging or discharging from its surface. For variations in q from 0.1 to 1.0, ζcc from 0.06 to 0.1, Re from 250 to 2000, and Ar from 10 to 35, the temperature distribution, as well as maximum temperature variation in the battery cell, is determined. Further, the occurrence of the critical threshold of temperature and the necessary change in these operating parameters to avoid thermal runaway is proposed. Finally, the effect of flow Reynolds number and channel spacing on average Pressure and average Nusselt number is also discussed in this study. From the exhaustive analysis on the effect of considered parameters, it is observed that apart from heat generation parameter q, other parameters like ζcc and Re play a prominent role in reducing the maximum temperature of the battery cell. However, Ar has a negligible impact on the thermal performance of battery cell irrespective of any value of other parameters considered in this study. It was interesting to find that for Re> 1000, the impact on temperature profiles of the battery cell is minimal, while the other parameters were either kept constant or varying, putting a limit to higher values of Re.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

Not applicable.

Abbreviations

Ar :

Aspect ratio of a battery cell

C :

Constant of Ar

L :

Length of battery cell m

K :

Thermal conductivity W m−1 K−1

l o :

Length of extra outlet fluid domain m

l i :

Length of extra fluid domain m

h :

Convective heat transfer coefficient W m−2 K−1

L o :

Dimensionless length of extra outlet fluid domain

L i :

Dimensionless length of extra inlet fluid domain

Nu:

Nusselt number

q‴ :

Volumetric heat generation W m−3

q :

Dimensionless volumetric heat generation

Pr :

Prandtl number

Re :

Reynolds number

T :

Temperature K

T o :

Maximum allowable temperature of battery cell K

:

Non-dimensional temperature

u :

Velocity along the axial direction m s−1

U :

Non-dimensional velocity along the axial direction

u :

Free stream velocity ms−1

v :

Velocity along the transverse direction m s−1

p :

Pressure Nm−2

P :

Non-dimensional pressure

V :

Non-dimensional velocity along the transverse direction

w :

Half-width m

W :

Non-dimensional width

x :

Axial direction

X :

Non-dimensional axial direction

y :

Transverse direction

Y :

Non-dimensional transverse direction

α :

Thermal diffusivity of fluid m2 s

ν :

Kinematic viscosity of fluid m2 s

ρ :

Density of fluid kg m−3

ζ cc :

Conduction–convection parameter

avg :

Average

c :

Center

f :

Fluid domain

m :

Mean

s :

Solid domain (battery cell)

∞:

Free stream

References

  1. Dincer I, Hamut H, Javani N. Thermal management of electric vehicle battery systems. Hoboken: Wiley; 2017. https://doi.org/10.1002/9781118900239.

    Book  Google Scholar 

  2. Du S, Lai Y, Ai L, Ai L, Cheng Y, Tang Y, et al. An investigation of irreversible heat generation in lithium ion batteries based on a thermo-electrochemical coupling method. Appl Therm Eng. 2017;121:501–10. https://doi.org/10.1016/j.applthermaleng.2017.04.077.

    Article  CAS  Google Scholar 

  3. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246–67. https://doi.org/10.1016/j.ensm.2017.05.013.

    Article  Google Scholar 

  4. Ye J, Chen H, Wang Q, Huang P, Sun J, Lo S. Thermal behavior and failure mechanism of lithium ion cells during overcharge under adiabatic conditions. Appl Energy. 2016;182:464–74. https://doi.org/10.1016/j.apenergy.2016.08.124.

    Article  CAS  Google Scholar 

  5. Zhao R, Liu J, Gu J. Simulation and experimental study on lithium ion battery short circuit. Appl Energy. 2016;173:29–39. https://doi.org/10.1016/j.apenergy.2016.04.016.

    Article  CAS  Google Scholar 

  6. Feng X, He X, Ouyang M, Lu L, Wu P, Kulp C, et al. Thermal runaway propagation model for designing a safer battery pack with 25Ah LiNixCoyMnzO2large format lithium ion battery. Appl Energy. 2015;154:74–91. https://doi.org/10.1016/j.apenergy.2015.04.118.

    Article  CAS  Google Scholar 

  7. Xu J, Lan C, Qiao Y, Ma Y. Prevent thermal runaway of lithium-ion batteries with minichannel cooling. Appl Therm Eng. 2017;110:883–90. https://doi.org/10.1016/j.applthermaleng.2016.08.151.

    Article  CAS  Google Scholar 

  8. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24. https://doi.org/10.1016/j.jpowsour.2012.02.038.

    Article  CAS  Google Scholar 

  9. Ramadass P, Haran BS, White RE, Popov BN. Capacity fade of Li-ion cells cycled at elevated temperatures. J Power Sources. 2002;112:606–13.

    Article  CAS  Google Scholar 

  10. Wang Z, Mao N, Jiang F. Study on the effect of spacing on thermal runaway propagation for lithium-ion batteries. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-09026-6.

    Article  Google Scholar 

  11. Molaeimanesh GR, Mousavi-Khoshdel SM, Nemati AB. Experimental analysis of commercial LiFePO4 battery life span used in electric vehicle under extremely cold and hot thermal conditions. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09272-z.

    Article  Google Scholar 

  12. Kiani M, Ansari M, Arshadi AA, Houshfar E, Ashjaee M. Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach. J Therm Anal Calorim. 2020;2020:1–13. https://doi.org/10.1007/S10973-020-09403-6.

    Article  Google Scholar 

  13. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158:R1. https://doi.org/10.1149/1.3515880.

    Article  CAS  Google Scholar 

  14. Samba A, Omar N, Gualous H, Van den Bossche P, Van Mierlo J, Boubekeur TI. Development of 2D thermal battery model for Lithium-ion pouch cells. EVS27 Int. Batter. Hybrid Fuel Cell Electr. Veh. Symp. 2013;6:629–37. https://doi.org/10.1109/EVS.2013.6915028.

    Article  Google Scholar 

  15. Yu K, Yang X, Cheng Y, Li C. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack. J Power Sources. 2014;270:193–200. https://doi.org/10.1016/j.jpowsour.2014.07.086.

    Article  CAS  Google Scholar 

  16. Xie Y, Tang J, Shi S, Xing Y, Wu H, Hu Z, et al. Experimental and numerical investigation on integrated thermal management for lithium-ion battery pack with composite phase change materials. Energy Convers Manag. 2017;154:562–75. https://doi.org/10.1016/j.enconman.2017.11.046.

    Article  Google Scholar 

  17. Yang T, Yang N, Zhang X, Li G. Investigation of the thermal performance of axial-flow air cooling for the lithium-ion battery pack. Int J Therm Sci. 2016;108:132–44. https://doi.org/10.1016/j.ijthermalsci.2016.05.009.

    Article  Google Scholar 

  18. Yang N, Zhang X, Li G, Hua D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: a comparative analysis between aligned and staggered cell arrangements. Appl Therm Eng. 2015;80:55–65. https://doi.org/10.1016/j.applthermaleng.2015.01.049.

    Article  CAS  Google Scholar 

  19. Chen D, Jiang J, Kim GH, Yang C, Pesaran A. Comparison of different cooling methods for lithium ion battery cells. Appl Therm Eng. 2016;94:846–54. https://doi.org/10.1016/j.applthermaleng.2015.10.015.

    Article  CAS  Google Scholar 

  20. Cicconi P, Landi D, Germani M. Thermal analysis and simulation of a Li-ion battery pack for a lightweight commercial EV. Appl Energy. 2017;192:159–77. https://doi.org/10.1016/j.apenergy.2017.02.008.

    Article  Google Scholar 

  21. Basu S, Hariharan KS, Kolake SM, Song T, Sohn DK, Yeo T. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Appl Energy. 2016;181:1–13. https://doi.org/10.1016/j.apenergy.2016.08.049.

    Article  CAS  Google Scholar 

  22. Bai F, Chen M, Song W, Feng Z, Li Y, Ding Y. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Appl Therm Eng. 2017;126:17–27. https://doi.org/10.1016/j.applthermaleng.2017.07.141.

    Article  CAS  Google Scholar 

  23. Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016;126:622–31. https://doi.org/10.1016/j.enconman.2016.08.063.

    Article  CAS  Google Scholar 

  24. Chalise D, Shah K, Prasher R, Jain A. Conjugate heat transfer analysis of air/liquid cooling of a Li-ion battery pack. J Electrochem Energy Convers Storage. 2018;15:1–8. https://doi.org/10.1115/1.4038258.

    Article  CAS  Google Scholar 

  25. Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Appl Therm Eng. 2016;96:190–9. https://doi.org/10.1016/j.applthermaleng.2015.11.019.

    Article  CAS  Google Scholar 

  26. Tong W, Somasundaram K, Birgersson E, Mujumdar AS, Yap C. Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module. Appl Therm Eng. 2016;99:672–82. https://doi.org/10.1016/j.applthermaleng.2016.01.050.

    Article  CAS  Google Scholar 

  27. Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Appl Therm Eng. 2017;123:1514–22. https://doi.org/10.1016/j.applthermaleng.2017.06.059.

    Article  Google Scholar 

  28. Zhang T, Gao Q, Wang G, Gu Y, Wang Y, Bao W, et al. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process. Appl Therm Eng. 2017;116:655–62. https://doi.org/10.1016/j.applthermaleng.2017.01.069.

    Article  Google Scholar 

  29. Li K, Yan J, Chen H, Wang Q. Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system. Appl Therm Eng. 2018;132:575–85. https://doi.org/10.1016/j.applthermaleng.2017.12.131.

    Article  CAS  Google Scholar 

  30. Malik M, Dincer I, Rosen MA, Mathew M, Fowler M. Thermal and electrical performance evaluations of series connected Li-ion batteries in a pack with liquid cooling. Appl Therm Eng. 2018;129:472–81. https://doi.org/10.1016/j.applthermaleng.2017.10.029.

    Article  CAS  Google Scholar 

  31. Huang P, Verma A, Robles DJ, Wang Q, Mukherjee P, Sun J. Probing the cooling effectiveness of phase change materials on lithium-ion battery thermal response under overcharge condition. Appl Therm Eng. 2018;132:521–30. https://doi.org/10.1016/j.applthermaleng.2017.12.121.

    Article  CAS  Google Scholar 

  32. Richter F, Vie PJS, Kjelstrup S, Burheim OS. Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles. Electrochim Acta. 2017;250:228–37. https://doi.org/10.1016/j.electacta.2017.07.173.

    Article  CAS  Google Scholar 

  33. Zhao C, Cao W, Dong T, Jiang F. Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. Int J Heat Mass Transf. 2018;120:751–62. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.083.

    Article  CAS  Google Scholar 

  34. Panchal S, Khasow R, Dincer I, Fraser R, Fowler M. Thermal design and simulation of mini-channel cold plate for water cooled large sized prismatic Lithium-ion battery. Appl Therm Eng. 2017;122:80–90.

    Article  CAS  Google Scholar 

  35. Shahid S, Agelin-chaab M. Development and analysis of a technique to improve air-cooling and temperature uniformity in a battery pack for cylindrical batteries. Therm Sci Eng Prog. 2018;5:351–63. https://doi.org/10.1016/j.tsep.2018.01.003.

    Article  Google Scholar 

  36. Ng B, Coman PT, Mustain WE, White RE. Non-destructive parameter extraction for a reduced order lumped electrochemical-thermal model for simulating Li-ion full-cells. J Power Sources. 2020;445:227296. https://doi.org/10.1016/j.jpowsour.2019.227296.

    Article  CAS  Google Scholar 

  37. Yang XH, Tan SC, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manag. 2016;117:577–85. https://doi.org/10.1016/j.enconman.2016.03.054.

    Article  CAS  Google Scholar 

  38. Saw LH, Poon HM, Thiam HS, Cai Z, Chong WT, Pambudi NA, et al. Novel thermal management system using mist cooling for lithium-ion battery packs. Appl Energy. 2018;223:146–58. https://doi.org/10.1016/j.apenergy.2018.04.042.

    Article  Google Scholar 

  39. Mayyas AR, Omar M, Pisu P, Al-Ahmer A, Mayyas A, Montes C, et al. Comprehensive thermal modeling of a power-split hybrid powertrain using battery cell model. J Power Sources. 2011;196:6588–94. https://doi.org/10.1016/j.jpowsour.2011.03.036.

    Article  CAS  Google Scholar 

  40. wang H, Liu N, Ma L. Development of a two dimensional thermal model for Li-ion battery pack with experimental validation. J Therm Sci Eng Appl. 2019. https://doi.org/10.1115/1.4043810.

    Article  Google Scholar 

  41. Chen K, Unsworth G, Li X. Measurements of heat generation in prismatic Li-ion batteries. J Power Sources. 2014;261:28–37. https://doi.org/10.1016/j.jpowsour.2014.03.037.

    Article  CAS  Google Scholar 

  42. Nazari A, Farhad S. Heat generation in lithium-ion batteries with different nominal capacities and chemistries. Appl Therm Eng. 2017;125:1501–17. https://doi.org/10.1016/j.applthermaleng.2017.07.126.

    Article  CAS  Google Scholar 

  43. Karimi G, Li X. Thermal management of lithium-ion batteries for electric vehicles. Int J Energy Res. 2012;37:13–24. https://doi.org/10.1002/er.1956.

    Article  CAS  Google Scholar 

  44. Xu XM, He R. Research on the heat dissipation performance of battery pack based on forced air cooling. J Power Sources. 2013;240:33–41. https://doi.org/10.1016/j.jpowsour.2013.03.004.

    Article  CAS  Google Scholar 

  45. Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, et al. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12anode. Appl Energy. 2016;183:659–73. https://doi.org/10.1016/j.apenergy.2016.08.160.

    Article  CAS  Google Scholar 

  46. Richter F, Kjelstrup S, Vie PJS, Burheim OS. Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. J Power Sources. 2017;359:592–600. https://doi.org/10.1016/j.jpowsour.2017.05.045.

    Article  CAS  Google Scholar 

  47. Drake SJ. Thermal conduction and heat generation phenomena in Li-Ion cells. Austin: The University of Texas; 2014.

    Google Scholar 

  48. Ravichandra R, Rajoo S, Wen TL. Heat generation rate and computational simulation for Li-ion battery module. Int J Mech Mechatronics Eng. 2013;7:989–92.

    Google Scholar 

  49. Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources. 2013;239:30–6. https://doi.org/10.1016/j.jpowsour.2013.03.102.

    Article  CAS  Google Scholar 

  50. Maleki H, Al Hallaj S, Selman JR, Dinwiddie RB, Wang H. Thermal properties of lithium-ion battery and components. J Electrochem Soc. 1999;146:947–54. https://doi.org/10.1149/1.1391704.

    Article  CAS  Google Scholar 

  51. Karimi G, Dehghan AR. Thermal management analysis of a lithium-ion battery pack using flow network approach. Int J Mech Eng Mech. 2012;1:88–94. https://doi.org/10.11159/ijmem.2012.011.

    Article  Google Scholar 

  52. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J Comput Phys. 1982;48:387–411. https://doi.org/10.1016/0021-9991(82)90058-4.

    Article  Google Scholar 

  53. Jahangeer S, Ramis MK, Jilani G. Conjugate heat transfer analysis of a heat generating vertical plate. Int J Heat Mass Transf. 2007;50:85–93. https://doi.org/10.1016/j.ijheatmasstransfer.2006.06.042.

    Article  Google Scholar 

  54. Ramis MK, Jilani G, Jahangeer S. Conjugate conduction-forced convection heat transfer analysis of a rectangular nuclear fuel element with non-uniform volumetric energy generation. Int J Heat Mass Transf. 2008;51:517–25. https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.019.

    Article  CAS  Google Scholar 

  55. Afzal A, Mohammed Samee AD, Abdul Razak RK, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135:1797–811. https://doi.org/10.1007/s10973-018-7664-2.

    Article  CAS  Google Scholar 

  56. Ismail NHF, Toha SF, Azubir NAM, Md Ishak NH, Hassan MK, Ksm Ibrahim BS. Simplified heat generation model for lithium ion battery used in electric vehicle. IOP Conf Ser Mater Sci Eng. 2013;53:8–13. https://doi.org/10.1088/1757-899X/53/1/012014.

    Article  CAS  Google Scholar 

  57. Leng F, Tan CM, Pecht M. Effect of temperature on the aging rate of Li ion battery operating above room temperature. Sci Rep. 2015;5:1–12. https://doi.org/10.1038/srep12967.

    Article  CAS  Google Scholar 

  58. Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources. 2011;196:5685–96. https://doi.org/10.1016/j.jpowsour.2011.02.076.

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asif Afzal or M. K. Ramis.

Ethics declarations

Conflicts of interest

Authors declare no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, A., Mohammed Samee, A.D., Abdul Razak, R.K. et al. Thermal management of modern electric vehicle battery systems (MEVBS). J Therm Anal Calorim 144, 1271–1285 (2021). https://doi.org/10.1007/s10973-020-09606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09606-x

Keywords

Navigation