Skip to main content
Log in

Experimental studies on mass transfer during convective drying of spent coffee grounds generated in the soluble coffee industry

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Drying is a very important stage in the treatment of spent coffee grounds destined to biofuels production. The mass transfer during the convective drying of spent coffee grounds generated in the soluble coffee industry is analyzed. An experimental design from sixteen isothermal drying experiments for different sample thicknesses (5 mm, 10 mm, 15 mm and 20 mm) and drying air temperatures (100 °C, 150 °C, 200 °C and 250 °C) using a drying air velocity of 1 m s−1 was proposed. Drying times, drying rates and effective diffusivity coefficients were obtained. Drying curves were fitted with the main mathematical model proposed in the literature, and the drying rates were studied from the moisture ratio and the drying air temperature. Constant and time-dependence effective diffusivity was evaluated using polynomial surface models. Drying times range between 18 min (test at 5 mm and 250 °C) and 3 h (test at 20 mm and 100 °C). Drying rate and effective diffusivity values were found between 0.0000226 and 0.001722 s−1 and 1.79 × 10−9 and 29.1 × 10−9 m2 s−1, respectively. The main differences between these experiments and those carried out by the same authors about the drying of spent coffee grounds obtained in the services sector were studied and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a 0, a 1, a 2, a 3, a 4, a 5, a 6, a 7, a 8 :

Coefficients of the polynomial surface model

a, b, c, d, e, f, k, k 0, k 1, n :

Coefficients of the thin-layer drying kinetics mathematical model

d p :

Particle size (mm)

D eff :

Effective diffusivity (m2 s−1)

DR:

Drying rate (s−1)

Fo:

Fourier number

L :

Thickness of the slab (m)

N :

Number of data

R 2 :

Coefficient of determination

RMSE:

Root-mean-square error

SCG-SCI:

Spent coffee grounds generated in the soluble coffee industry

SCG-SS:

Spent coffee grounds generated in the service sector

t :

Time (s)

T :

Temperature (°C, K)

v :

Velocity (m s−1)

x :

Spatial dimension of mass transport (m)

X e :

Equilibrium moisture content (kg moisture kg−1 dry matter)

X 0 :

Initial moisture content (kg moisture kg−1 dry matter)

X t :

Moisture content at time t (kg moisture kg−1 dry matter)

XR:

Dimensionless moisture ratio

References

  1. International Coffee Organization (ICO). Annual Review 2017/2018. 2018. http://www.ico.org/documents/cy2018-19/annual-review-2017-18-e.pdf. Accessed 10 Aug 2019.

  2. Buerge IJ, Poiger T, Müller MD, Buser H. Caffeine, an anthropogenic marker for wastewater contamination of surface waters. Environ Sci Technol. 2003;37:691–700. https://doi.org/10.1021/es020125z.

    Article  CAS  PubMed  Google Scholar 

  3. Cruz R, Cardoso MM, Fernandes L, Oliveira M, Mendes E, Baptista P, Morais S, Casal S. Espresso coffee residues: a valuable source of unextracted compounds. J Agric Food Chem. 2012;60:7777–84. https://doi.org/10.1021/jf3018854.

    Article  CAS  PubMed  Google Scholar 

  4. Morikawa CK. A new green approach to Fenton’s chemistry using tea dregs and coffee grounds as raw material. Green Process Synth. 2014;3:117–25. https://doi.org/10.1515/gps-2013-0113.

    Article  CAS  Google Scholar 

  5. Muñoz Velasco P, Mendívil MA, Morales MP, Muñoz L. Eco-fired clay bricks made by adding spent coffee grounds: a sustainable way to improve buildings insulation. Mater Struct. 2016;1–2:641–50. https://doi.org/10.1617/s11527-015-0525-6.

    Article  CAS  Google Scholar 

  6. Lee HK, Park YG, Jeong T, Song YS. Green nanocomposites filled with spent coffee grounds. J Appl Polym Sci. 2015;132:42043. https://doi.org/10.1002/app.42043.

    Article  CAS  Google Scholar 

  7. Mussatto SI, Machado EMS, Martins S, Teixeira JA. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technol. 2011;4:661–72. https://doi.org/10.1007/s11947-011-0565-z.

    Article  CAS  Google Scholar 

  8. Kondamudi N, Mohapatra SK, Misra M. Spent coffee grounds as a versatile source of green energy. J Agric Food Chem. 2008;56:11757–60. https://doi.org/10.1021/jf802487s.

    Article  CAS  PubMed  Google Scholar 

  9. Park J, Kim B, Son J, Lee JW. Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel. Bioresour Technol. 2018;249:494–500. https://doi.org/10.1016/j.biortech.2017.10.048.

    Article  CAS  PubMed  Google Scholar 

  10. Todaka M, Kowhakul W. The flash points and thermal behaviors of diesel blends with biodiesels, α-pinene, d-limonene and caffeic acid as antioxidants. J Therm Anal Calorim. 2019;135:2665–75. https://doi.org/10.1007/s10973-018-7798-2.

    Article  CAS  Google Scholar 

  11. Silva MA, Nebra SA, Machado Silva MJ, Sanchez CG. The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenergy. 1998;14:457–67. https://doi.org/10.1016/S0961-9534(97)10034-4.

    Article  CAS  Google Scholar 

  12. Efthymiopoulos I, Hellier P, Ladommatos N, Kay A, Mills-Lamptey B. Integrated strategies for water removal and lipid extraction from coffee industry residues. Sustain Energy Technol Assess. 2018;29:26–35. https://doi.org/10.1016/j.seta.2018.06.016.

    Article  Google Scholar 

  13. Corrêa JLG, Santos JCP, Fonseca BE, Carvalho AGS. Drying of spent coffee grounds in a cyclonic dryer. Coffee Sci. 2014;9:68–76.

    Google Scholar 

  14. Caetano NS, Silvaa VFM, Mata TM. Valorization of coffee grounds for biodiesel production. Chem Eng Trans. 2012;26:267–72. https://doi.org/10.3303/CET1226045.

    Article  Google Scholar 

  15. Caetano NS, Silva VFM, Melo AC, Mata TM. Potential of spent coffee grounds for biodiesel production and other applications. Chem Eng Trans. 2013;35:1063–8. https://doi.org/10.3303/CET1335177.

    Article  Google Scholar 

  16. Juarez GFY, Pabiloña KBC, Manlangit KBL, Go AW. Direct dilute acid hydrolysis of spent coffee grounds: a new approach in sugar and lipid recovery. Waste Biomass Valoris. 2018;9:235–46. https://doi.org/10.1007/s12649-016-9813-9.

    Article  CAS  Google Scholar 

  17. Sosa-Arnao JH, Nebra S. Bagasse dryer role in the energy recovery of water tube boilers. Dry Technol. 2009;27:587–94. https://doi.org/10.1080/07373930802716326.

    Article  Google Scholar 

  18. Kang SB, Oh HY, Kim JJ, Choi KS. Characteristics of spent coffee ground as a fuel and combustion test in a small boiler (6.5 kW). Renew Energy. 2017;113:1208–14. https://doi.org/10.1016/j.renene.2017.06.092.

    Article  CAS  Google Scholar 

  19. Wei Y, Chen M, Li Q, Niu S, Li Y. Isothermal combustion characteristics of anthracite and spent coffee grounds briquettes. J Therm Anal Calor. 2019;136:1447–56. https://doi.org/10.1007/s10973-018-7790-x.

    Article  CAS  Google Scholar 

  20. Casanova-Peláez PJ, Palomar-Carnicero JM, Manzano-Agugliaro F, Cruz-Peragón F. Olive cake improvement for bioenergy: the drying kinetics. Int J Green Energy. 2015;12:559–69. https://doi.org/10.1080/15435075.2014.880347.

    Article  CAS  Google Scholar 

  21. Strumillo C, Kudra T. Drying: Principles, application and design. London, Great Britain: Gordon and Breach; 1986.

    Google Scholar 

  22. Vasić M, Grbavčić Ž, Radojević Z. Analysis of moisture transfer during the drying of clay tiles with particular reference to an estimation of the time-dependent effective diffusivity. Dry Technol. 2014;32:829–40. https://doi.org/10.1080/07373937.2013.870194.

    Article  CAS  Google Scholar 

  23. Efremov G, Kudra T. Calculation of the effective diffusion coefficients by applying a quasi-stationary equation for drying kinetics. Dry Technol. 2004;22:2273–9. https://doi.org/10.1081/DRT-200039993.

    Article  Google Scholar 

  24. Gómez-de la Cruz FJ, Cruz-Peragón F, Casanova-Peláez PJ, Palomar-Carnicero JM. A vital stage in the large-scale production of biofuels from spent coffee grounds: the drying kinetics. Fuel Process Technol. 2015;130:188–96. https://doi.org/10.1016/j.fuproc.2014.10.012.

    Article  CAS  Google Scholar 

  25. Hussain MM, Dincer I. Two-dimensional heat and moisture transfer analysis of a cylindrical moist object subjected to drying: a finite-difference approach. Int J Heat Mass Transf. 2003;46:4033–9. https://doi.org/10.1016/S0017-9310(03)00229-1.

    Article  CAS  Google Scholar 

  26. Kaya A, Aydın O, Dincer I. Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects. Int J Heat Mass Transf. 2006;49:3094–103. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.043.

    Article  Google Scholar 

  27. Wang CY, Singh RP. Use of variable equilibrium moisture content in modeling rice drying. Trans ASAE. 1978;11:668–72.

    Google Scholar 

  28. Gómez-de la Cruz FJ, Casanova-Peláez PJ, Palomar-Carnicero JM, Cruz-Peragón F. Drying kinetics of olive stone: a valuable source of biomass obtained in the olive oil extraction. Energy. 2014;75:146–52. https://doi.org/10.1016/j.energy.2014.06.085.

    Article  Google Scholar 

  29. Overhults DG, White GM, Hamilton HE, Ross IJ. Drying of soybeans with heated air. Trans ASAE. 1973;16:112–3.

    Article  Google Scholar 

  30. Midilli A, Kucuk H, Yapar Z. A new model for single-layer drying. Dry Technol. 2002;20:1503–13. https://doi.org/10.1081/DRT-120005864.

    Article  Google Scholar 

  31. Akgun NA, Doymaz I. Modelling of olive cake thin-layer drying process. J Food Eng. 2005;68:455–61. https://doi.org/10.1016/j.jfoodeng.2004.06.023.

    Article  Google Scholar 

  32. Noomhorm A, Verma LR. Generalized single-layer rice drying models. Trans ASAE. 1986;29:587–91.

    Article  Google Scholar 

  33. Pathare PB, Sharma GP. Effective moisture diffusivity of onion slices undergoing infrared convective drying. Biosyst Eng. 2006;93:285–91. https://doi.org/10.1016/j.biosystemseng.2005.12.010.

    Article  Google Scholar 

  34. Crank J. The mathematics of diffusion. Oxford, England: Clarendon Press; 1975.

    Google Scholar 

  35. Li H, Chang Q, Gao R, Dai Z, Chen X, Yu G, Wang F. Thin-layer drying characteristics and modeling of lignite under supercritical carbon dioxide extraction and the evolution of pore structure and reactivity. Fuel Process Technol. 2018;170:1–12. https://doi.org/10.1016/j.fuproc.2017.09.010.

    Article  CAS  Google Scholar 

  36. Gómez-de la Cruz FJ, Casanova-Peláez PJ, López-García R, Cruz-Peragón F. Review of the drying kinetics of olive oil mill wastes: biomass recovery. BioResources. 2015;10:6055–80. https://doi.org/10.15376/biores.10.3.Cruz.

    Article  Google Scholar 

  37. Gómez-De La Cruz FJ, Palomar-Carnicero JM, Casanova-Peláez PJ, Cruz-Peragón F. Experimental determination of effective moisture diffusivity during the drying of clean olive stone: dependence of temperature, moisture content and sample thickness. Fuel Process Technol. 2015;137:320–6. https://doi.org/10.1016/j.fuproc.2015.03.018.

    Article  CAS  Google Scholar 

  38. Pinto L, Tobinaga S. Diffusive model with shrinkage in the thin-layer drying of fish muscles. Dry Technol. 2006;24:509–16. https://doi.org/10.1080/07373930600612040.

    Article  Google Scholar 

  39. Babalis SJ, Belessiotis VG. Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. J Food Eng. 2004;65:449–58. https://doi.org/10.1016/j.jfoodeng.2004.02.005.

    Article  Google Scholar 

  40. Avhad MR, Marchetti JM. Mathematical modelling of the drying kinetics of Hass avocado seeds. Ind Crops Prod. 2016;91:76–87. https://doi.org/10.1016/j.indcrop.2016.06.035.

    Article  Google Scholar 

  41. Wilkins R, Brusey J, Gaura E. Modelling uncontrolled solar drying of mango waste. J Food Eng. 2018;237:44–51. https://doi.org/10.1016/j.jfoodeng.2018.05.012.

    Article  CAS  Google Scholar 

  42. Gómez-De La Cruz FJ, Casanova-Peláez PJ, Palomar-Carnicero JM, Cruz-Peragón F. Modeling of olive-oil mill waste rotary dryers: green energy recovery systems. Appl Therm Eng. 2015;80:362–73. https://doi.org/10.1016/j.applthermaleng.2015.01.035.

    Article  CAS  Google Scholar 

  43. Arjona R, García A, Ollero P. Drying of alpeorujo, a waste product of the olive oil mill industry. J Food Eng. 1999;41:229–34. https://doi.org/10.1016/S0260-8774(99)00104-1.

    Article  Google Scholar 

  44. Gögüs F, Maskan M. Air drying characteristics of solid waste (pomace) of olive oil processing. J Food Eng. 2006;72:378–82. https://doi.org/10.1016/j.jfoodeng.2004.12.018.

    Article  Google Scholar 

  45. Dak M, Pareek NK. Effective moisture diffusivity of pomegranate arils under going microwave-vacuum drying. J Food Eng. 2014;122:117–21. https://doi.org/10.1016/j.jfoodeng.2013.08.040.

    Article  Google Scholar 

  46. Dadali G, Apar DK, Özbek B. Estimation of effective moisture diffusivity of okra for microwave drying. Dry Technol. 2007;25:1441–6. https://doi.org/10.1080/07373930701536767.

    Article  Google Scholar 

  47. Cuevas M, Martínez-Cartas ML, Pérez-Villarejo L, Hernández L, García-Martín JF, Sánchez S. Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning. Renew Energy. 2019;132:911–20. https://doi.org/10.1016/j.renene.2018.08.053.

    Article  Google Scholar 

  48. Sakin M, Kaymak-Ertekin F, Ilicali C. Modeling the moisture transfer during baking of white cake. J Food Eng. 2007;80:822–31. https://doi.org/10.1016/j.jfoodeng.2006.07.011.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been conducted with the financial support of the Spanish “Consejería Andaluza de Innovación, Ciencia y Empresa” through the research projects AGR-6131 (“Modelado y Control de secadero rotativo de orujo”) and AGR-6509 (“Producción de biocombustible utilizando hueso de aceituna y residuos de poda de olivo”) as part of the research program “Proyectos de Excelencia de la Junta de Andalucía 2010-2014.” The authors gratefully acknowledge the financial support provided. The authors gratefully acknowledge to the University of Valladolid (Spain), the contribution of the industrial spent coffee grounds as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Gómez-de la Cruz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-de la Cruz, F.J., Palomar-Carnicero, J.M., Hernández-Escobedo, Q. et al. Experimental studies on mass transfer during convective drying of spent coffee grounds generated in the soluble coffee industry. J Therm Anal Calorim 145, 97–107 (2021). https://doi.org/10.1007/s10973-020-09600-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09600-3

Keywords

Navigation