Skip to main content
Log in

Effect of cost-free energy storage material and saline water depth on the performance of square pyramid solar still: a mathematical and experimental study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low productivity of single-slope solar still is the main barrier for its worldwide usability. An attempt has been conducted to enhance the distillate yield of single basin square pyramid solar still using thermal storage material in basin. The experiments were conducted with two identical single basin square pyramid solar stills under the climate of location (20.61° N 72.91° E), one with small pieces of black granite as a thermal storage material and other without black granite. With and without thermal storage, the effect of saline water depth (30 and 20 mm) was investigated on the performance of still. Compared to still without thermal storage, yield of 1430.40 mL m−2 (13.96% higher) and 1380.40 mL m−2 (6.63% higher) was obtained at water depth of 30 mm and 20 mm for the still with thermal storage. The daily average efficiency of 18.69% (11.35% higher) and 18.58% (5.09% higher) was obtained at water depth of 30 mm and 20 mm for the still with thermal storage. The higher yield was achieved at water depth of 30 mm than the 20 mm for the still with thermal storage, whereas the higher yield was achieved at water depth of 20 mm than the 30 mm for the still without thermal storage. Transient model for the still with and without thermal storage was developed, and the results were compared with experimental outcomes and good agreement was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Effective area, m2

C :

Specific heat, J kg−1 K−1

h :

Heat transfer coefficient, W m−2 K−1

h fg :

Latent heat of evaporation of water, J kg−1

I(t) :

Incident solar radiation, W m−2

k :

Thermal conductivity, W m−1 K−1

m :

Mass, kg

p :

Partial vapor pressure, N m−2

Q :

Rate of heat transfer, kW

q :

Heat flux, kW m−2

R :

Reflectivity

s :

Salinity of water, g kg−1

T :

Temperature, K

U :

Overall loss coefficient, W m−2 °C

V :

Wind speed, m s−1

y :

Thickness, m

α :

Absorptivity

ε :

Emissivity

η :

Efficiency

σ :

Stefan–Boltzmann constant

a:

Ambient air

b:

Basin

c:

Convection

cond:

Conductive

DW:

Distillate water

Exp:

Experimental

e:

Evaporation

eff:

Effective

eq:

Equivalent

g:

Glass cover

i:

Instantaneous

ins:

Insulation

gr:

Granite

r:

Radiative

t:

Total

Theo:

Theoretical

w:

Water

References

  1. El-Dessouky HT. Ettouney HM. Fundamentals of salt water desalination; 2002.

  2. Ahmadi G, Toghraie D, Akbari OA. Efficiency improvement of a steam power plant through solar repowering. Int J Exergy. 2017;22:158–82.

    CAS  Google Scholar 

  3. Ahmadi G, Toghraie D, Azimian A, Akbari OA. Evaluation of synchronous execution of full repowering and solar assisting in a 200 MW steam power plant, a case study. Appl Therm Eng. 2017;112:111–23.

    Google Scholar 

  4. Ahmadi G, Toghraie D, Akbari OA. Solar parallel feed water heating repowering of a steam power plant: a case study in Iran. Renew Sustain Energy Rev. 2017;77:474–85.

    Google Scholar 

  5. Ahmadi GR, Toghraie D. Energy and exergy analysis of Montazeri Steam Power Plant in Iran. Renew Sustain Energy Rev. 2016;56:454–63.

    Google Scholar 

  6. Toghraie D, Karami A, Afrand M, Karimipour A. Effects of geometric parameters on the performance of solar chimney power plants. Energy. 2018;162:1052–61.

    Google Scholar 

  7. Dabiri S, Khodabandeh E, Poorfar AK, Mashayekhi R, Toghraie D, Abadian Zade SA. Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Energy. 2018;153:17–26.

    Google Scholar 

  8. Ali C, Rabhi K, Nciri R, Nasri F, Attyaoui S. Theoretical and experimental analysis of pin fins absorber solar still. Desalin Water Treat. 2015;56:1705–11.

    CAS  Google Scholar 

  9. Rahbar N, Esfahani JA. Experimental study of a novel portable solar still by utilizing the heatpipe and thermoelectric module. Desalination. 2012;284:55–61.

    CAS  Google Scholar 

  10. Velmurugan V, Gopalakrishnan M, Raghu R, Srithar K. Single basin solar still with fin for enhancing productivity. Energy Convers Manag. 2008;49:2602–8.

    Google Scholar 

  11. Jani HK, Modi KV. Experimental performance evaluation of single basin dual slope solar still with circular and square cross-sectional hollow fins. Sol Energy. 2019;179:186–94.

    Google Scholar 

  12. Srithar K, Rajaseenivasan T, Karthik N, Periyannan M, Gowtham M. Stand alone triple basin solar desalination system with cover cooling and parabolic dish concentrator. Renew Energy. 2016;90:157–65.

    Google Scholar 

  13. Modi KV, Ankoliya DB, Shukla DL. An approach to optimization of double basin single slope solar still water depth for maximum distilled water output. J Renew Sustain Energy. 2018;10:043708.

    Google Scholar 

  14. Modi KV, Modi JG. Performance of single-slope double-basin solar stills with small pile of wick materials. Appl Therm Eng. 2019;149:723–30.

    Google Scholar 

  15. Tabrizi FF, Dashtban M, Moghaddam H. Experimental investigation of a weir-type cascade solar still with built-in latent heat thermal energy storage system. Desalination. 2010;260:248–53.

    CAS  Google Scholar 

  16. Sadineni SB, Hurt R, Halford CK, Boehm RF. Theory and experimental investigation of a weir-type inclined solar still. Energy. 2008;33:71–80.

    CAS  Google Scholar 

  17. Omara ZM, Kabeel AE, Younes MM. Enhancing the stepped solar still performance using internal reflectors. Desalination. 2013;314:67–72.

    CAS  Google Scholar 

  18. Omara ZM, Kabeel AE, Younes MM. Enhancing the stepped solar still performance using internal and external reflectors. Energy Convers Manag. 2014;78:876–81.

    Google Scholar 

  19. Kalidasa Murugavel K, Anburaj P, Samuel Hanson R, Elango T. Progresses in inclined type solar stills. Renew Sustain Energy Rev. 2013;20:364–77.

    Google Scholar 

  20. Gad HE, Shams El-Din S, Hussien AA, Ramzy K. Thermal analysis of a conical solar still performance: An experimental study. Sol Energy. 2015;122:900–9.

    Google Scholar 

  21. Modi KV, Nayi KH, Sharma SS. Influence of water mass on the performance of spherical basin solar still integrated with parabolic reflector. Groundw Sustain Dev. 2020;10:100299.

    Google Scholar 

  22. Arunkumar T, Vinothkumar K, Ahsan A, Jayaprakash R, Kumar S. Experimental study on various solar still designs. ISRN Renew Energy. 2012. https://doi.org/10.5402/2012/569381.

    Article  Google Scholar 

  23. Kabeel AE, Abdelgaied M, Almulla N. Performances of pyramid-shaped solar still with different glass cover angles: Experimental study. In: IREC 2016—7th Int Renew Energy Congr. 2016.

  24. Kabeel AE. Performance of solar still with a concave wick evaporation surface. Energy. 2009;34:1504–9.

    Google Scholar 

  25. Nafey AS, Abdelkader M, Abdelmotalip A, Mabrouk AA. Solar still productivity enhancement. Energy Convers Manag. 2001;42:1401–8.

    CAS  Google Scholar 

  26. El-Sebaii AA, Yaghmour SJ, Al-Hazmi FS, Faidah AS, Al-Marzouki FM, Al-Ghamdi AA. Active single basin solar still with a sensible storage medium. Desalination. 2009;249:699–706.

    CAS  Google Scholar 

  27. Arjunan TV, Aybar HS, Nedunchezhian N, Sakthivel M. Effect of blue metal stones on the performance of a conventional solar still. J Converg Eng Technol Sci. 2009;1:17–22.

    Google Scholar 

  28. Bilal A, Jamil B, Haque NU, Ansari MA. Investigating the effect of pumice stones sensible heat storage on the performance of a solar still. Groundw Sustain Dev. 2019;9:100228.

    Google Scholar 

  29. Murugavel KK, Sivakumar S, Ahamed JR, Chockalingam KKSK, Srithar K. Single basin double slope solar still with minimum basin depth and energy storing materials. Appl Energy. 2010;87:514–23.

    Google Scholar 

  30. Shukla DL, Modi KV. Hybrid solar still–Liquid desiccant regenerator and water distillation system. Sol Energy. 2019;182:117–33.

    CAS  Google Scholar 

  31. Modi KV, Shukla DL, Ankoliya DB. A Comparative performance study of double basin single slope solar still with and without using nanoparticles. J Sol Energy Eng Trans ASME. 2019;141:031008.

    CAS  Google Scholar 

  32. Modi KV, Shukla DL. Regeneration of liquid desiccant for solar air-conditioning and desalination using hybrid solar still. Energy Convers Manag. 2018;171:1598–616.

    CAS  Google Scholar 

  33. Jani HK, Modi KV. A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices. Renew Sustain Energy Rev. 2018;93:302–17.

    Google Scholar 

  34. Kalita P, Borah S, Das D. Design and performance evaluation of a novel solar distillation unit. Desalination. 2017;416:65–75.

    CAS  Google Scholar 

  35. Sathyamurthy R, Harris Samuel DG, Nagarajan PK. Theoretical analysis of inclined solar still with baffle plates for improving the fresh water yield. Process Saf Environ Prot Inst Chem Eng. 2016;101:93–107.

    CAS  Google Scholar 

  36. Shukla DL, Modi KV. A technical review on regeneration of liquid desiccant using solar energy. Renew Sustain Energy Rev. 2017;78:517–29.

    CAS  Google Scholar 

  37. Tayeb AM. Performance study of some designs of solar stills. Energy Convers Manag. 1992;33:889–98.

    CAS  Google Scholar 

  38. Basel II. Design and performance of a transportable hemispherical solar still. Renew Energy. 2009;34:145–50.

    Google Scholar 

  39. Hamdan MA, Musa AM, Jubran BA. Performance of solar still under Jordanian climate. Energy Convers Manag. 1999;40:495–503.

    CAS  Google Scholar 

  40. Fath HES, El-Samanoudy M, Fahmy K, Hassabou A. Thermal-economic analysis and comparison between pyramid-shaped and single-slope solar still configurations. Desalination. 2003;159:69–79.

    CAS  Google Scholar 

  41. Kianifar A, Zeinali Heris S, Mahian O. Exergy and economic analysis of a pyramid-shaped solar water purification system: active and passive cases. Energy. 2012;38:31–6.

    Google Scholar 

  42. Sathyamurthy R, Nagarajan PK, Kennady HJ, Ravikumar TS, Paulson V, Ahsan A. Enhancement of fresh water production on triangular pyramid solar still using phase change material as storage material. Front Heat Mass Transf. 2014;5.

  43. Nayi KH, Modi KV. Pyramid solar still: a comprehensive review. Renew Sustain Energy Rev. 2018;81:136–48.

    Google Scholar 

  44. Nayi KH, Modi K V. Thermal modeling of pyramid solar still. In: Kumar A, Prakash O, editors. Sol Desalin Technol. 1st ed. Springer Singapore; 2019. p. 205–18.

  45. Kabeel AE, Abdelaziz GB, El-Said EMS. Experimental investigation of a solar still with composite material heat storage: energy, exergy and economic analysis. J Clean Prod. 2019;231:21–34.

    Google Scholar 

  46. Aybar HŞ. Mathematical modeling of an inclined solar water distillation system. Desalination. 2006;190:63–70.

    CAS  Google Scholar 

  47. Tiwari GN, Tiwari A, Shyam. Handbook of Solar Energy: Theory, Analysis and Applications. 2016;55–6.

  48. Mahian O, Kianifar A. Mathematical modelling and experimental study of a solar distillation system. Proc Inst Mech Eng Part C J Mech Eng Sci. 2011;225:1203–12.

    CAS  Google Scholar 

  49. Arjunan TV, Aybar HŞ, Nedunchezhian N. Effect of sponge liner on the internal heat transfer coefficients in a simple solar still. Desalin Water Treat. 2011;29:271–84.

    CAS  Google Scholar 

  50. Sakthivel M, Shanmugasundaram S. Effect of energy storage medium (black granite gravel) on the performance of a solar still. Int J Energy Res. 2008;32:68–82.

    Google Scholar 

  51. Sampathkumar K, Senthilkumar P. Utilization of solar water heater in a single basin solar still-An experimental study. Desalination. 2012;297:8–19.

    CAS  Google Scholar 

  52. Elango C, Gunasekaran N, Sampathkumar K. Thermal models of solar still—a comprehensive review. Renew Sustain Energy Rev. Elsevier. 2015;47:856–911.

    Google Scholar 

  53. Cho WJ, Kwon S, Choi JW. The thermal conductivity for granite with various water contents. Eng Geol. 2009;107:167–71.

    Google Scholar 

  54. Arunkumar T, Jayaprakash R, Ahsan A, Technology S. A comparative experimental testing in enhancement of the efficiency of pyramid solar still and hemispherical solar still. Int J Renew Energy. 2012;7:1–7.

    Google Scholar 

  55. Arunkumar T, Jayaprakash R, Prakash A, Suneesh PU, Karthik M, Kumar S. Study of thermo physical properties and an improvement in production of distillate yield in pyramid solar still with boosting mirror. Indian J Sci Technol. 2010;3:879–84.

    CAS  Google Scholar 

  56. Mathioulakis E, Voropoulos K, Belessiotis V. Assessment of uncertainty in solar collector modeling and testing. Sol Energy. 1999;66:337–47.

    Google Scholar 

  57. Lira I. Evaluating the Measurement Uncertainty: fundamentals and practical guidance. Meas Sci Technol. 2002;13:1502-1502.

    Google Scholar 

  58. Rahbar N, Esfahani JA, Asadi A. An experimental investigation on productivity and performance of a new improved design portable asymmetrical solar still utilizing thermoelectric modules. Energy Convers Manag. 2016;118:55–62.

    Google Scholar 

  59. Holman JP. Experimental Methods for Engineers. Eighth: McGraw-Hill; 2012.

    Google Scholar 

  60. Dunkle R V. Solar water distillation; the roof type still and a multiple effect diffusion still. In Int Dev Heat Transf ASME Proc Int Heat Transf Part V. 1961;895.

  61. Morad MM, El-Maghawry HAM, Wasfy KI. Improving the double slope solar still performance by using flat-plate solar collector and cooling glass cover. Desalination. 2015;373:1–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep H. Nayi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Eqs. (4) to (8), various heat transfer coefficients can be calculated using correlation as mentioned below,

Convective and evaporative heat transfer coefficient between saline water and glass cover (hc, w–g and he, w–g) suggested by Dunkle [60]:

$$\begin{aligned} h_{{{\text{c}},{\text{w}} - {\text{g}}}} & = 0.884 \times \left[ {\left( {T_{\text{w}} - T_{\text{g}} } \right) + \frac{{\left( {p_{\text{w}} - p_{\text{g}} } \right) \times T_{\text{w}} }}{{268900 - p_{\text{w}} }}} \right]^{{\frac{1}{3}}} \\ h_{{{\text{e}},{\text{w}} - {\text{g}}}} & = 16.273 \times 10^{ - 3} \times h_{{{\text{c}},{\text{w}} - {\text{g}}}} \times \frac{{\left( {p_{\text{w}} - p_{\text{g}} } \right)}}{{\left( {T_{\text{w}} - T_{\text{g}} } \right)}} \\ \end{aligned}$$

Various radiative heat transfer coefficient:

$$\begin{aligned} h_{{{\text{r}},{\text{w}} - {\text{g}}}} & = \varepsilon_{\text{eff}} \sigma \left( {T_{\text{w}} + T_{\text{g}} } \right)\left( {T_{\text{w}}^{2} + T_{\text{g}}^{2} } \right) ;\quad \varepsilon_{\text{eff}} = \left( {\frac{1}{{\varepsilon_{\text{w}} }} + \frac{1}{{\varepsilon_{\text{g}} }} - 1} \right)^{ - 1} \\ h_{{{\text{r}},{\text{g}} - {\text{sky}}}} & = \varepsilon_{\text{g}} \sigma \left( {T_{\text{g}} + T_{\text{sky}} } \right)\left( {T_{\text{g}}^{2} + T_{\text{sky}}^{2} } \right) \\ \end{aligned}$$

Heat transfer coefficient between basin and the surrounding through insulation [52]:

$$h_{\text{b}} = \left( {\frac{{y_{\text{ins}} }}{{k_{\text{ins}} }} + \frac{1}{{h_{{{\text{t}},{\text{b}} - {\text{a}}}} }}} \right)^{ - 1} ; \quad h_{{{\text{t}},{\text{b}} - {\text{a}}}} = 5.7 + 3.8 V$$

Overall heat transfer coefficient between basin and surroundings through insulation:

$$U_{\text{b}} = \left( {1 + \frac{{A_{\text{s}} }}{{A_{\text{b}} }}} \right) \times \left( {\frac{{h_{\text{b}} \times h_{{{\text{c}},{\text{b}} - {\text{w}}}} }}{{h_{\text{b}} + h_{{{\text{c}},{\text{b}} - {\text{w}}}} }}} \right)$$

Convective heat transfer coefficient between glass cover and atmosphere (hc,g–a) [52]:

$$h_{{{\text{c}},{\text{g}} - {\text{a}}}} = 2.8 + 3 V$$

Saturation vapor pressure at water or at glass cover temperature [61]:

$$p_{\text{w or g}} = e^{{\left[ {25.317 - \frac{5144}{{{\text{T}}_{\text{w or g}} }}} \right]}}$$

Specific heat capacity of saline water based on salinity and temperature (°C) [52]:

$$C_{\text{w}} = a_{1} + a_{2} T_{\text{w}} + a_{3} T_{\text{W}}^{2} + a_{4} T_{\text{W}}^{3}$$

where

$$\begin{aligned} a_{1} & = 4206.8 - 6.6197{\text{s}} + 1.2288 \times 10^{ - 2} {\text{s}}^{2} \\ a_{2} & = - 1.1262 + 5.4178 \times 10^{ - 2} {\text{s}} - 2.2719 \times 10^{ - 4} {\text{s}}^{2} \\ a_{3} & = 1.2026 \times 10^{ - 2} - 5.5366 \times 10^{ - 4} {\text{s}} + 1.8906 \times 10^{ - 6} {\text{s}}^{2} \\ a_{4} & = 6.8774 \times 10^{ - 7} + 1.5170 \times 10^{ - 6} {\text{s}} - 4.4268 \times 10^{ - 9} {\text{s}}^{2} \\ \end{aligned}$$

Latent heat of vaporization of saline water dependent on temperature (°C) [52]:

$$\begin{aligned} h_{\text{fg}} & = 2.4935 \times 10^{6} \left( {1 - 9.4779 \times 10^{ - 4} T_{\text{w}} + 1.3132 \times 10^{ - 7} T_{\text{w}}^{2} } \right. \\ & \quad \left. { - \;4.7974 \times 10^{ - 9} T_{\text{w}}^{3} } \right) {\text{J}}\;{\text{kg}^{ - 1}}\quad {\text{for}}\; T_{\text{w}} \le 70 \;^{ \circ } {\text{C}} \\ \end{aligned}$$

In Eqs. (1) to (3) and (14 and 15), \(\alpha_{\text{b}}^{'} , \alpha_{\text{R}}^{'} , \alpha_{\text{w}}^{'} \;{\text{and}} \;\alpha_{\text{b}}^{'}\) can be calculated as [50]

$$\begin{aligned} \alpha_{\text{b}}^{'} & = \alpha_{\text{b}} \left( {1 - \alpha_{\text{g}} } \right)\left( {1 - R_{\text{g}} } \right)\left( {1 - R_{\text{w}} } \right)\left( {1 - \alpha_{\text{w}} } \right)\left( {1 - R_{\text{b}} } \right) \\ \alpha_{\text{gr}}^{'} & = \alpha_{\text{gr}} \left( {1 - \alpha_{\text{g}} } \right)\left( {1 - R_{\text{g}} } \right)\left( {1 - R_{\text{w}} } \right)\left( {1 - \alpha_{\text{w}} } \right)\left( {1 - R_{\text{gr}} } \right) \\ \alpha_{\text{w}}^{'} & = \alpha_{\text{w}} \left( {1 - \alpha_{\text{g}} } \right)\left( {1 - R_{\text{g}} } \right)\left( {1 - R_{\text{w}} } \right) \\ \alpha_{\text{g}}^{\prime } & = \left( {1 - R_{\text{g}} } \right)\alpha_{\text{g}} \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayi, K.H., Modi, K.V. Effect of cost-free energy storage material and saline water depth on the performance of square pyramid solar still: a mathematical and experimental study. J Therm Anal Calorim 144, 1351–1368 (2021). https://doi.org/10.1007/s10973-020-09598-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09598-8

Keywords

Navigation