Skip to main content
Log in

Experimental investigation on the stability and thermophysical properties of Al2O3/DW and CuO/DW nanofluids to be utilized in an indirect water bath heater

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, 0.5–5 mass/% of Al2O3 and CuO nano-additives were dispersed in the base water by the two stage method (with a magnetic stirrer and ultra-sonication bath) to prepare different nanofluids with enhanced thermophysical properties. These nanofluids are considered to be utilized, as the bath fluid in the shell side of an indirect water bath heater to improve the thermal performance and reduce the power consumption of the heater. The effects of ultra-sonication time, surfactants, and nanoparticle size on the well formation of nanofluids, and their stabilities were probed. Densities, shear stresses, and apparent viscosities of the nanofluids were also measured to investigate the non-Newtonian behavior of samples. In addition, effects of the temperature, PH, nanoparticle type and concentration, and nanoparticle sizes on the thermal conductivities of nanofluids were investigated. Finally, nanofluids were utilized in a large-scale indirect water bath heater and its power consumption reduction compared to that of using water, as the bath fluid was measured and reported. 5 mass/% of CuO/water nanofluid at 80 °C was found the best nanofluids with the thermal conductivity enhancement of 43.28% and heater power consumption reduction of 17.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jannatabadi M, Farzaneh-Gord M, Rahbari HR, Nersi A. Energy and exergy analysis of reciprocating natural gas expansion engine based on valve configurations. Energy. 2018;158:986–1000.

    Article  Google Scholar 

  2. Liu Y, Hou J, Zhao H, Liu X, Xia Z. A method to recover natural gas hydrates with geothermal energy conveyed by CO2. Energy. 2018;144:265–78.

    Article  CAS  Google Scholar 

  3. Soleimani P, Khoshvaght-Aliabadi M, Rashidi H, Bahmanpour H. Performance enhancement of water bath heater at natural gas city gate station using twisted tubes. Chinese J Chem Eng. 2019;28:165–79.

    Article  Google Scholar 

  4. Qiu L, Ouyang Y, Feng Y, Zhang X. Review on micro/nano phase change materials for solar thermal applications. Renew Energy. 2019;140:513–38.

    Article  CAS  Google Scholar 

  5. Mehling H, Cabeza LF. Phase change materials and their basic properties. In: Paksoy HÖ, editor. Thermal energy storage for sustainable energy consumption. Dordrecht: Springer; 2007. p. 257–77. https://doi.org/10.1007/978-1-4020-5290-3_17.

    Chapter  Google Scholar 

  6. Olfati M, Bahiraei M, Veysi F. A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: preheating based on real demand. Energy. 2019;173:598–609.

    Article  CAS  Google Scholar 

  7. Rashidmardani A, Hamzehei M. Effect of various parameters on indirect fired water bath heaters’ efficiency to reduce energy losses. Int J Sci Eng Investig. 2013;2:17–24.

    Google Scholar 

  8. Farzaneh-Gord M, Arabkoohsar A, Deymi Dasht-bayaz M, Machado L, Koury RNN. Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters. Renew Energy. 2014;72:258–70.

    Article  Google Scholar 

  9. Akhlaghi K, Eftekhari H, Farzaneh-Gord M, Khatib M. Solar heat utilization in birjand natural gas pressure reduction, a thermo-economic analysis. Int J Chem Environ Eng. 2011;2:267.

    Google Scholar 

  10. Arabkoohsar A, Ismail KAR, Machado L, Koury RNN. Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems. Renew Energy. 2016;93:424–41.

    Article  Google Scholar 

  11. Borelli D, Devia F, Lo Cascio E, Schenone C. Energy recovery from natural gas pressure reduction stations: integration with low temperature heat sources. Energy Convers Manag. 2018;159:274–83.

    Article  CAS  Google Scholar 

  12. Xiong Y, An S, Xu P, Ding Y, Li C, Zhang Q, et al. A novel expander-depending natural gas pressure regulation configuration: performance analysis. Appl Energy. 2018;220:21–35.

    Article  Google Scholar 

  13. Yang S, Zhang L, Xu H. Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes. Appl Therm Eng. 2011;31:2981–91.

    Article  Google Scholar 

  14. Khoshvaght-Aliabadi M, Arani Z, Rahimpour F. Influence of Al2O3–H2O nanofluid on performance of twisted minichannels. Adv Powder Technol. 2016;27:1514–25.

    Article  CAS  Google Scholar 

  15. Khoshvaght-Aliabadi M, Arani-Lahtari Z. Proposing new configurations for twisted square channel (TSC): nanofluid as working fluid. Appl Therm Eng. 2016;108:709–19.

    Article  CAS  Google Scholar 

  16. Feizabadi A, Khoshvaght-Aliabadi M, Rahimi AB. Numerical investigation on Al2O3/water nanofluid flow through twisted-serpentine tube with empirical validation. Appl Therm Eng. 2018;137:296–309.

    Article  CAS  Google Scholar 

  17. Eiamsa-ard S, Promthaisong P, Thianpong C, Pimsarn M, Chuwattanakul V. Influence of three-start spirally twisted tube combined with triple-channel twisted tape insert on heat transfer enhancement. Chem Eng Process Process Intensif. 2016;102:117–29.

    Article  CAS  Google Scholar 

  18. Farzaneh-Gord M, Ghezelbash R, Sadi M, Moghadam AJ. Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment. Energy. 2016;112:998–1014.

    Article  CAS  Google Scholar 

  19. Angelo W, Mantelli MH, Milanez FH. Design of a heater for natural gas stations assisted by two-phase loop thermosyphon. In: 14th international heat pipe conference 2007

  20. Dabiri E, Bahrami F, Mohammadzadeh S. Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim. 2018;131:2243–59. https://doi.org/10.1007/s10973-017-6791-5.

    Article  CAS  Google Scholar 

  21. Sadeghalvaad M, Dabiri E, Afsharimoghadam P. Lithium lubricating greases containing carbon base nano-additives: preparation and comprehensive properties evaluation. SN Appl Sci. 2019;1:264. https://doi.org/10.1007/s42452-019-0289-7.

    Article  CAS  Google Scholar 

  22. Sadeghalvaad M, Dabiri E, Zahmatkesh S, Afsharimoghadam P. Preparation and properties evaluation of nitrile rubber nanocomposites reinforced with organo-clay, CaCO3, and SiO2 nanofillers. Polym Bull. 2018. https://doi.org/10.1007/s00289-018-2583-8.

    Article  Google Scholar 

  23. Sadeghalvaad M, Dabiri E, Zahmatkesh SAP. Improved curing conditions and mechanical/chemical properties of nitrile butadiene rubber composites reinforced with carbon based nanofillers. Nanostructures. 2019;9:453–67.

    CAS  Google Scholar 

  24. Khorramdel H, Dabiri E, Tabrizi FF, Galehdari M. Synthesis and characterization of graphene acid membrane with ultrafast and selective water transport channels. Sep Purif Technol. 2019;212:497–504.

    Article  CAS  Google Scholar 

  25. Zahmatkesh S, Zebarjad SM, Bahrololoom ME, Dabiri E, Arab SM. Synthesis of ZnO/In2O3 composite nanofibers by co-electrospinning: a comprehensive parametric investigating the process. Int: Ceram; 2018.

    Google Scholar 

  26. Dabiri E, Noori M, Zahmatkesh S. Modeling and CFD simulation of volatile organic compounds removal from wastewater by membrane gas stripping using an electro-spun nanofiber membrane. J Water Process Eng. 2018;30:100635.

    Article  Google Scholar 

  27. Sadeghalvaad M, Sabbaghi S. The effect of the TiO2/polyacrylamide nanocomposite on water-based drilling fluid properties. Powder Technol. 2015;272:113–9.

    Article  CAS  Google Scholar 

  28. Qiu L, Zhu N, Zou H, Feng Y, Zhang X, Tang D. Advances in thermal transport properties at nanoscale in China. Int J Heat Mass Transf. 2018;125:413–33.

    Article  CAS  Google Scholar 

  29. Chol SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME J. 1995;231:99–106.

    Google Scholar 

  30. Khoshvaght-Aliabadi M, Pazdar S, Sartipzadeh O. Experimental investigation of water based nanofluid containing copper nanoparticles across helical microtubes. Int Commun Heat Mass Transf. 2016;70:84–92. https://doi.org/10.1016/j.icheatmasstransfer.2015.12.006.

    Article  CAS  Google Scholar 

  31. Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T. Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects. Appl Phys Lett. 2003;83:2931.

    Article  CAS  Google Scholar 

  32. Xing M, Yu J, Wang R. Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes. Int J Heat Mass Transf. 2015;88:609–16. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.005.

    Article  CAS  Google Scholar 

  33. Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S. Measurement of thermal conductivity of graphene-water nanofluid at below and above ambient temperatures. Int Commun Heat Mass Transf. 2016;70:66–74. https://doi.org/10.1016/j.icheatmasstransfer.2015.11.002.

    Article  CAS  Google Scholar 

  34. Li X, Zou C, Zhou L, Qi A. Experimental study on the thermo-physical properties of diathermic oil based SiC nanofluids for high temperature applications. Int J Heat Mass Transf. 2016;97:631–7. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.056.

    Article  CAS  Google Scholar 

  35. Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf. 2016;97:547–58. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.016.

    Article  CAS  Google Scholar 

  36. Guo S-Z, Li Y, Jiang J-S, Xie H-Q. Nanofluids containing γ-Fe2O3 nanoparticles and their heat transfer enhancements. Nanoscale Res Lett. 2010;5:1222–7.

    Article  CAS  Google Scholar 

  37. Nemade K, Waghuley S. A novel approach for enhancement of thermal conductivity of CuO/H2O based nanofluids. Appl Therm Eng. 2016;95:271–4.

    Article  CAS  Google Scholar 

  38. Chen J, Zhai F, Liu M, Hou X, Chou KC. SiC nanowires with tunable hydrophobicity/hydrophilicity and their application as nanofluids. Langmuir. 2016;32:5909–16.

    Article  CAS  Google Scholar 

  39. Noghrehabadi A, Ghalambaz M, Ghanbarzadeh A. Effects of variable viscosity and thermal conductivity on natural-convection of nanofluids past a vertical plate in porous media. J Mech. 2014;30:265–75.

    Article  Google Scholar 

  40. Qiu L, Zheng XH, Su GP, Tang DW. Design and application of a freestanding sensor based on 3ω technique for thermal-conductivity measurement of solids, liquids, and nanopowders. Int J Thermophys. 2013;34:2261–75. https://doi.org/10.1007/s10765-011-1075-y.

    Article  CAS  Google Scholar 

  41. Kole M, Dey TK. Role of interfacial layer and clustering on the effective thermal conductivity of CuO–gear oil nanofluids. Exp Therm Fluid Sci. 2011;35:1490–5.

    Article  CAS  Google Scholar 

  42. Yiamsawasd T, Dalkilic AS, Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta. 2012;545:48–56.

    Article  CAS  Google Scholar 

  43. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33:529–35.

    Article  Google Scholar 

  44. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  45. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf. 2007;50:2272–81.

    Article  CAS  Google Scholar 

  46. Rahmati AR, Reiszadeh M. An experimental study on the effects of the use of multi-walled carbon nanotubes in ethylene glycol/water-based fluid with indirect heaters in gas pressure reducing stations. Appl Therm Eng. 2018;134:107–17.

    Article  CAS  Google Scholar 

  47. Qiu L, Zou H, Wang X, Feng Y, Zhang X, Zhao J, et al. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon. 2019;141:497–505.

    Article  CAS  Google Scholar 

  48. Qiu L, Guo P, Zou H, Feng Y, Zhang X, Pervaiz S, et al. Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration. ES Energy Environ. 2018;2:66–72.

    Google Scholar 

  49. Kumar PM, Kumar J, Tamilarasan R, Sendhilnathan S, Suresh S. Review on nanofluids theoretical thermal conductivity models. Eng J. 2015;19:67–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Fars Science and Technology Park for providing its equipped laboratories for them to successfully complete this work.

Funding

This research received grant from Fars Science and Technology Park by the Contract Number of 720-3654-58352.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehran Sadeghalvaad or Samad Sabbaghi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi, S.R., Sadeghalvaad, M. & Sabbaghi, S. Experimental investigation on the stability and thermophysical properties of Al2O3/DW and CuO/DW nanofluids to be utilized in an indirect water bath heater. J Therm Anal Calorim 142, 2303–2318 (2020). https://doi.org/10.1007/s10973-020-09592-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09592-0

Keywords

Navigation