Skip to main content
Log in

Non-isothermal crystallization behavior of isotactic polypropylene/copper nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The Non-isothermal crystallization behavior of isotactic polypropylene (iPP)/copper nanocomposites with four different mass percentages (0.5, 1.0, 2.0 and 4.0 mass%) of copper nanoparticles (nCu) were study by means of differential scanning calorimeter (DSC) at 2.5, 5, 10 and 20 °C min−1. The nanostructure of PP/nCu nanocomposites was also studied by WAXD, SEM and optical microscopy, while their hierarchical crystalline morphologies (e.g., spherulites, lamellas and unit cell) were studied during the crystallization progress through polarized optical microscopy and in situ X-ray scattering at small and wide angle, observing that the spherulite size was not influenced by the nCu’s, although the lamellas size and X-ray diffraction intensity increased with the incorporation of nanoparticles. The PP/nCu nanocomposites presented a mixture morphology with well-dispersed oxidized nanoparticles and some agglomerates, which were larger at higher concentration of particles. The crystallization results obtained by DSC indicated a displacement in the peak crystallization temperature at higher values. These results in combination with the kinetic of crystallization analyzed by the Jeziorny method clearly indicated an acceleration in the crystallization process. Additionally, the crystallization activation energy decreases for all nanoparticle’s concentration, indicating a possible nucleating effect. However, the nucleation activity analyzed by the Dobreva and Gutzow’s method showed that nCu could not be considered such as conventional heterogeneous nucleating agent of iPP. Conversely, the incorporation of nCu in the iPP matrix increased significantly the thermal conductivity of nanocomposites helping to the thermal dissipation from the melted macromolecules to the nCu’s, accelerating the non-isothermal crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Móczó J, Pukánszky B. Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem. 2008;14:535–63.

    Google Scholar 

  2. Zhang S, Cao XY, Ma YM, Ke YC, Zhang JK, Wang FS. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express Polym Lett. 2011;5:581–90.

    CAS  Google Scholar 

  3. Kratochvíla J, Boudenne A, Krupa I. Effect of filler size on thermophysical and electrical behavior of nanocomposites based on expanded graphite nanoparticles filled in low-density polyethylene matrix. Polym Compos. 2013;34:149–55.

    Google Scholar 

  4. Masirek R, Szkudlarek E, Piorkowska E, Slouf M, Kratochvil J, Baldrian J. Nucleation of isotactic polypropylene crystallization by gold nanoparticles. J Polym Sci Part B Polym Phys. 2010;48:469–78.

    CAS  Google Scholar 

  5. Isayev AI, Kumar R, Lewis TM. Ultrasound assisted twin screw extrusion of polymer–nanocomposites containing carbon nanotubes. Polymer. 2009;50:250–60.

    CAS  Google Scholar 

  6. Yang L, Zhang Z, Wang X, Chen J, Li H. Effect of ultrasonic irradiation on the microstructure and the electric property of PP/CPP/MWNT composites. J Appl Polym Sci. 2012;128:1510–20.

    Google Scholar 

  7. Ávila-Orta CA, Martínez-Colunga JG, Bueno-Baqués D, Raudry-López CE, Cruz-Delgado VJ, González-Morones P, Valdéz-Garza JA, Esparza-Juárez ME, Espinoza-González CJ, Rodríguez-González JA. Proceso continuo asistido por ultrasonido de frecuencia y amplitud variable, para la preparación de nanocompuestos a base de polímeros y nanopartículas. Mx. Patent MX/a/2009/003842, 19 September 2014.

  8. Mata-Padilla JM, Ávila-Orta CA, Medellín-Rodríguez FJ, Hernández-Hernández E, Jiménez-Barrera RM, Crúz-Delgado VJ, et al. Structural and morphological studies on the deformation behavior of polypropylene/multi-walled carbon nanotubes nanocomposites prepared through ultrasound-assisted melt extrusion process. J Polym Sci Part B Polym Phys. 2015;53:475–91.

    CAS  Google Scholar 

  9. Ávila-Orta C, Quiñones-Jurado Z, Waldo-Mendoza M, Rivera-Paz E, Cruz-Delgado V, Mata-Padilla J, et al. Ultrasound-assist extrusion methods for the fabrication of polymer nanocomposites based on polypropylene/multi-wall carbon nanotubes. Materials (Basel). 2015;8:7900–12.

    PubMed Central  Google Scholar 

  10. Suktha P, Lekpet K, Siwayaprahm P, Sawangphruk M. Enhanced mechanical properties and bactericidal activity of polypropylene nanocomposite with dual-function silica-silver core–shell nanoparticles. J Appl Polym Sci. 2013;128:4339–45.

    CAS  Google Scholar 

  11. Tjong SC, Bao S. Structure and mechanical behavior of isotactic polypropylene composites filled with silver nanoparticles. E-Polymers. 2007. https://doi.org/10.1515/epoly.2007.7.1.1618.

    Article  Google Scholar 

  12. Dehnavi MH, Asghar A, Jeddi A, Gharehaghaji AA, Yazdanshenas ME. Thermal properties of conductive nanocomposite core–shell filament yarns. Indian J Fibre Text Res. 2013;38:380–6.

    CAS  Google Scholar 

  13. Fredin L, Li Z, Lanagan MT, Ratner M, Marks TJ. Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites. Adv Funct Mater. 2013;23:3560–9.

    CAS  Google Scholar 

  14. Delgado K, Quijada R, Palma R, Palza H. Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbiol. 2011;53:50–4.

    CAS  PubMed  Google Scholar 

  15. España-Sánchez BL, Ávila-Orta CA, Padilla-Vaca F, Neira-Velázquez MG, González-Morones P, Rodríguez-González JA, et al. Enhanced antibacterial activity of melt processed poly(propylene) Ag and Cu nanocomposites by argon plasma treatment. Plasma Process Polym. 2014;11:353–65.

    Google Scholar 

  16. Gawish SM, Avci H, Ramadan AM, Mosleh S, Monticello R, Breidt F, et al. Properties of antibacterial polypropylene/nanometal composite fibers. J Biomater Sci Polym. 2012;23:43–61.

    CAS  Google Scholar 

  17. Arranz-Andrés J, Pérez E, Cerrada M. Nanocomposites based on isotactic polypropylene–copper nanoparticles as electromagnetic shields. Sci Adv Mater. 2013;5:1524–32.

    Google Scholar 

  18. Cruz-Delgado VJ, Ávila-Orta CA, Espinoza-Martínez AB, Mata-Padilla JM, Solis-Rosales SG, Jalbout AF, et al. Carbon nanotube surface-induced crystallization of polyethylene terephthalate (PET). Polymer. 2014;55:642–50.

    CAS  Google Scholar 

  19. Mikešová J, Šlouf M, Gohs U, Popelková D, Vacková T, Vu NH, et al. Nanocomposites of polypropylene/titanate nanotubes: morphology, nucleation effects of nanoparticles and properties. Polym Bull. 2014;71:795–818.

    Google Scholar 

  20. Espinoza-Martínez AB, Ávila-Orta CA, Cruz-Delgado VJ, Medellín-Rodríguez FJ, Bueno-Baqués D, Mata-Padilla JM. Effect of MWNTs concentration and cooling rate on the morphological, structural, and electrical properties of non-isothermally crystallized PEN/MWNT nanocomposites. J Appl Polym Sci. 2015;132:1–8.

    Google Scholar 

  21. Espinoza-Martinez AB, Avalos-Belmontes F, De Valle LFR, Espinoza-Martinez PA, Avila-Orta CA, Soriano-Corral F, et al. Morphological study and dielectric behavior of nonisothermally crystallized poly(ethylene naphthalate) nanocomposites as a function of graphene content. J Nanomater. 2016;2016:9846102.

    Google Scholar 

  22. Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by DSC. Polymer. 1978;19:1142–4.

    CAS  Google Scholar 

  23. Medellín-Rodríguez FJ, Mata-Padilla JM, Hsiao BS, Waldo-Mendoza MA, Ramírez-Vargas E, Sánchez-Valdes S. The effect of nanoclays on the nucleation, crystallization, and melting mechanisms of isotactic polypropylene. Polym Eng Sci. 2007;47:1889–97.

    Google Scholar 

  24. Chae DW, Kim BC. Physical properties of isotactic poly(propylene)/silver nanocomposites: dynamic crystallization behavior and resultant morphology. Macromol Mater Eng. 2005;290:1149–56.

    CAS  Google Scholar 

  25. Du M, Guo B, Wan J, Zou Q, Jia D. Effects of halloysite nanotubes on kinetics and activation energy of non-isothermal crystallization of polypropylene. J Polym Res. 2010;17:109–18.

    CAS  Google Scholar 

  26. Hao W, Li W, Yang W, Shen L. Effect of silicon nitride nanoparticles on the crystallization behavior of polypropylene. Polym Test. 2011;30:527–33.

    CAS  Google Scholar 

  27. Alvarez VA, Perez CJ. Effect of different inorganic filler over isothermal and non-isothermal crystallization of polypropylene homopolymer. J Therm Anal Calorim. 2012;107:633–43.

    CAS  Google Scholar 

  28. Ferreira CI, Dal Castel C, Oviedo MAS, Mauler RS. Isothermal and non-isothermal crystallization kinetics of polypropylene/exfoliated graphite nanocomposites. Thermochim Acta. 2013;553:40–8.

    CAS  Google Scholar 

  29. Radhakrishnan S, Sonawane PS. Role of heat transfer and thermal conductivity in the crystallization behavior of polypropylene-containing additives: a phenomenological model. J Appl Polym Sci. 2003;89:2994–9.

    CAS  Google Scholar 

  30. Radhakrishnan S, Sonawane P, Pawaskar N. Effect of thermal conductivity and heat transfer on crystallization, structure, and morphology of polypropylene containing different fillers. J Appl Polym Sci. 2004;93:615–23.

    CAS  Google Scholar 

  31. Hwang H, Lee KY, Yeo T, Choi W. Investigation of structural and chemical transitions in copper oxide microstructures produced by combustion waves in a mixture of CuO–Cu2O–Cu and fuel. Appl Surf Sci. 2015;359:931–8.

    CAS  Google Scholar 

  32. Hybiak D, Garbarczyk J. Silver nanoparticles in isotactic polypropylene (iPP)* Part I. Silver nanoparticles as metallic nucleating agents for β-iPP polymorph. Polymers. 2014;59:585–91.

    Google Scholar 

  33. Slouf M, Vacková T, Zhigunov A, Sikora A, Piorkowska E. Nucleation of polypropylene crystallization with gold nanoparticles. Part 2: relation between particle morphology and nucleation activity. J Macromol Sci Part B. 2016;55:393–410.

    CAS  Google Scholar 

  34. Fanegas N, Gámez MA, Marco C, Jiménez I, Ellis G. Influence of a nucleating agent on the crystallization behaviour of isotactic polypropylene and elastomer blends. Polymer. 2007;48:5324–31.

    CAS  Google Scholar 

  35. Medellín-Rodríguez FJ, Mata-Padilla M, Sánchez-Valdes S, Vega-Díaz S, Dávalos-Montoya O. Step-like melting mechanisms of isothermally crystallized isotactic polypropylene. J Polym Sci Part B Polym Phys. 2008;46:2188–200.

    Google Scholar 

  36. Coburn N, Douglas P, Kaya D, Gupta J, McNally T. Isothermal and non-isothermal crystallization kinetics of composites of poly(propylene) and MWCNTs. Adv Ind Eng Polym Res. 2018;1:99–110.

    Google Scholar 

  37. Lu Y, Tang Y, Xia X. Non-isothermal crystallization of copper-containing composite based on polymer alloy of poly(ethylene oxide) and polyethylene. Thermochim Acta. 2018;670:61–70.

    CAS  Google Scholar 

  38. Chen Y, Yin Q, Zhang X, Xue X, Jia H. The crystallization behaviors and rheological properties of polypropylene/graphene nanocomposites: the role of surface structure of reduced graphene oxide. Thermochim Acta. 2018;661:124–36.

    CAS  Google Scholar 

  39. Rasana N, Jayanarayanan K, Pegoretti A. Non-isothermal crystallization kinetics of polypropylene/short glass fibre/multiwalled carbon nanotube composites. RSC Adv. 2018;8:39127–39.

    CAS  Google Scholar 

  40. Layachi A, Makhlouf A, Frihi D, Satha H, Belaadi A, Seguela R. Non-isothermal crystallization kinetics and nucleation behavior of isotactic polypropylene composites with micro-talc. J Therm Anal Calorim. 2019;138:1081–95.

    CAS  Google Scholar 

  41. Wu Z, Zhang Z, Mai K. Non-isothermal crystallization kinetics of UHMWPE composites filled by oligomer modified CaCO3. J Therm Anal Calorim. 2020;139:1111–20.

    CAS  Google Scholar 

  42. Ardanuy M, Velasco JI, Realinho V, Arencón D, Martínez AB. Non-isothermal crystallization kinetics and activity of filler in polypropylene/Mg–Al layered double hydroxide nanocomposites. Thermochim Acta. 2008;479:45–52.

    CAS  Google Scholar 

  43. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    CAS  Google Scholar 

  44. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1934;1956(57):217.

    Google Scholar 

  45. Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6.

    CAS  Google Scholar 

  46. Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun. 2002;23:771–5.

    CAS  Google Scholar 

  47. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2007;6:183–95.

    Google Scholar 

  48. Gonzalez-Calderon J, Castrejon-Gonzalez EO, Medellin-Rodriguez FJ, Stribeck N, Almendarez-Camarillo A. Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci. 2015;50:1457–68.

    CAS  Google Scholar 

  49. Ma W, Wang X, Zhang J. Crystallization kinetics of poly (vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim. 2011;103:319–27.

    CAS  Google Scholar 

  50. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J Non Cryst Solids. 1993;162:13–25.

    CAS  Google Scholar 

  51. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci. 2011;36:914–44.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of CONACYT Grant 127151/EU 7th FP Grant 26396 (CuVito Project), the Project 207450/12 SENER/CONACyT/CEMIE-Sol program (Project 12 “Desarrollo de Captadores, Sistemas Solares y Sistemas de Baja Temperatura con Materiales Novedosos para México”) and through Grant 294030 (LANIAUTO). Also, we are grateful to Janett Valdez, Myriam Lozano, María Guadalupe Méndez, and Ana Izabal for their technical assistance in the nanocomposites characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Mata-Padilla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mata-Padilla, J.M., Ávila-Orta, C.A., Almendárez-Camarillo, A. et al. Non-isothermal crystallization behavior of isotactic polypropylene/copper nanocomposites. J Therm Anal Calorim 143, 2919–2932 (2021). https://doi.org/10.1007/s10973-020-09512-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09512-2

Keywords

Navigation