Skip to main content
Log in

Heterogeneous nucleation and self-nucleation of isotactic polypropylene with addition of nano-ZnO

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of nano-zinc oxide (nano-ZnO) on the crystallization and melting behaviors of isotactic polypropylene (iPP) was investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical microscopy (POM). The results indicated that nano-ZnO is an efficient β-nucleating agent for iPP. The relative content of β-crystal rises at first and then goes down with increasing nano-ZnO concentration and can reach 95.2% while incorporating 3% nano-ZnO during isothermal crystallization at 132 °C. The β-nucleating efficiency of nano-ZnO depends on its concentration and dispersibility in the iPP matrix. The lattice constants of nano-ZnO are a = b = 0.325 nm and c = 0.521 nm, and 0.325 nm is exactly half of the unit cell parameter in the c-direction of β-iPP. This lattice matching facilitates the formation of β-crystal. Moreover, the relationship between heterogeneous nucleation and self-nucleation of iPP with addition of nano-ZnO was also explored by adjusting the fusion temperature Tf. DSC measurements confirmed that the ordered structures of iPP inhibit β-crystallization induced by nano-ZnO. Meanwhile, the introduction of nano-ZnO also reduces the α-nucleating activity of the ordered structures. A possible interaction mechanism was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zhang YF, Lin XF, Chen S. Preparation and nucleation effect of a novel compound nucleating agent carboxylated graphene/calcium pimelate for isotactic polypropylene. J Therm Anal Calorim. 2019;136:2363–71.

    Article  CAS  Google Scholar 

  2. Xu J, Mittal V, Bates FS. Toughened isotactic polypropylene: phase behavior and mechanical properties of blends with strategically designed random copolymer modifiers. Macromolecules. 2016;49:6497–506.

    Article  CAS  Google Scholar 

  3. Geng C, Su J, Han S, Wang K, Fu Q. Hierarchical structure and unique impact behavior of polypropylene/ethylene-octene copolymer blends as obtained via dynamic packing injection molding. Polymer. 2013;54:3392–401.

    Article  CAS  Google Scholar 

  4. Esthappan SK, Nair AB, Joseph R. Effect of crystallite size of zinc oxide on the mechanical, thermal and flow properties of polypropylene/zinc oxide nanocomposites. Compos Part B. 2015;69:145–53.

    Article  CAS  Google Scholar 

  5. He B, Lin XF, Zhang YF. Effect of a novel compound nucleating agent calcium sulfate whisker/β-nucleating agent dicyclohexyl-terephthalamide on crystallization and melting behavior of isotactic polypropylene. J Therm Anal Calorim. 2018;132:1145–52.

    Article  CAS  Google Scholar 

  6. Dai X, Zhang Z, Wang C, Ding Q, Jiang J, Mai K. A novel montmorillonite with β-nucleating surface for enhancing β-crystallization of isotactic polypropylene. Compos Part A. 2013;49:1–8.

    Article  CAS  Google Scholar 

  7. Zhang N, Zhang Q, Wang K, Deng H, Fu Q. Combined effect of β-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene. J Therm Anal Calorim. 2011;107:733–43.

    Article  Google Scholar 

  8. Zhang QX, Yu ZZ, Xie XL, Mai YW. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer. 2004;45:5985–94.

    Article  CAS  Google Scholar 

  9. Wang M, Lin L, Peng Q, Ou W, Li H. Crystallization and mechanical properties of isotactic polypropylene/calcium carbonate nanocomposites with a stratified distribution of calcium carbonate. J Appl Polym Sci. 2014;131:39632.

    Article  Google Scholar 

  10. Jain S, Goossens H, van Duin M, Lemstra P. Effect of in situ prepared silica nano-particles on non-isothermal crystallization of polypropylene. Polymer. 2005;46:8805–18.

    Article  CAS  Google Scholar 

  11. Liu M, Guo B, Du M, Chen F, Jia D. Halloysite nanotubes as a novel β-nucleating agent for isotactic polypropylene. Polymer. 2009;50:3022–30.

    Article  CAS  Google Scholar 

  12. Varga J. β-modification of isotactic polypropylene: preparation, structure, processing, properties, and application. J Macromol Sci Part B. 2002;41:1121–71.

    Article  Google Scholar 

  13. Varga J. Crystallization, melting and supermolecular structure of isotactic polypropylene. In: Karger-Kocsis J, editor. Polypropylene: structure, blends and composites. London: Chapmann & Hall; 1995. p. 56–115.

    Chapter  Google Scholar 

  14. Wang K, Mai K, Han Z, Zeng H. Interaction of self-nucleation and the addition of a nucleating agent on the crystallization behavior of isotactic polypropylene. J Appl Polym Sci. 2001;81:78–84.

    Article  CAS  Google Scholar 

  15. Supaphol P, Spruiell JE. Crystalline memory effects in isothermal crystallization of syndiotactic polypropylene. J Appl Polym Sci. 2000;75:337–46.

    Article  CAS  Google Scholar 

  16. Supaphol P, Lin JS. Crystalline memory effect in isothermal crystallization of syndiotactic polypropylenes: effect of fusion temperature on crystallization and melting behavior. Polymer. 2001;42:9617–26.

    Article  CAS  Google Scholar 

  17. Lorenzo AT, Müller AJ. Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B Polym Phys. 2008;46:1478–87.

    Article  CAS  Google Scholar 

  18. Fillon B, Wittmann JC, Lotz B, Thierry A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J Polym Sci Part B Polym Phys. 1993;31:1383–93.

    Article  CAS  Google Scholar 

  19. Fillon B, Lotz B, Thierry A, Wittmann JC. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B Polym Phys. 1993;31:1395–405.

    Article  CAS  Google Scholar 

  20. Fillon B, Thierry A, Wittmann JC, Lotz B. Self-nucleation and recrystallization of polymers Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. J Polym Sci Part B Polym Phys. 1993;31:1407–24.

    Article  CAS  Google Scholar 

  21. Balzano L, Rastogi S, Peters G. Self-nucleation of polymers with flow: The case of bimodal polyethylene. Macromolecules. 2011;44:2926–33.

    Article  CAS  Google Scholar 

  22. Kang J, Weng G, Chen Z, Chen J, Cao Y, Yang F, Xiang M. New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. RSC Adv. 2014;4:29514–26.

    Article  CAS  Google Scholar 

  23. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res. 2014;21:384.

    Article  Google Scholar 

  24. Kang J, Peng H, Wang B, Chen Z, Li J, Chen J, Cao Y, Li H, Yang F, Xiang M. Comparative study on the crystallization behavior of β-isotactic polypropylene nucleated with different β-nucleation agents—effects of thermal conditions. J Appl Polym Sci. 2014;131:40115.

    Article  Google Scholar 

  25. Kang J, Chen Z, Yang F, Chen J, Cao Y, Weng G, Xiang M. Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures. Colloid Polym Sci. 2015;293:2061–73.

    Article  CAS  Google Scholar 

  26. Kang J, Weng G, Chen J, Yang F, Cao Y, Xiang M. Influences of pre-ordered melt structures on the crystallization behavior and polymorphic composition of β-nucleated isotactic polypropylene with different stereo-defect distribution. J Appl Polym Sci. 2015;132:42632.

    Article  Google Scholar 

  27. Zhang Q, Peng H, Kang J, Cao Y, Xiang M. Effects of melt structure on non-isothermal crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. Polym Eng Sci. 2017;57:989–97.

    Article  CAS  Google Scholar 

  28. Xiong M, Gu G, You B, Wu L. Preparation and characterization of poly (styrene butylacrylate) latex/nano-ZnO nanocomposites. J Appl Polym Sci. 2003;90:1923–31.

    Article  CAS  Google Scholar 

  29. Tang E, Cheng G, Ma X. Preparation of nano-ZnO/PMMA composite particles via grafting of the copolymer onto the surface of zinc oxide nanoparticles. Powder Technol. 2006;161:209–14.

    Article  CAS  Google Scholar 

  30. Lai Y, Meng M, Yu Y, Wang X, Ding T. Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Appl Catal B. 2011;105:335–45.

    Article  CAS  Google Scholar 

  31. Altan M, Yildirim H. Effects of compatibilizers on mechanical and antibacterial properties of injection molded nano-ZnO filled polypropylene. J Compos Mater. 2012;46:3189–99.

    Article  Google Scholar 

  32. Zhao H, Li RK. A study on the photo-degradation of zinc oxide (ZnO) filled polypropylene nanocomposites. Polymer. 2006;47:3207–17.

    Article  CAS  Google Scholar 

  33. Karami Z, Youssefi M, Borhani S. The effects of UV irradiation exposure on the structure and properties of polypropylene/ZnO nanocamposite fibers. Fibers Polym. 2013;14:1627–34.

    Article  CAS  Google Scholar 

  34. Jones AT, Aizlewood JM, Beckett DR. Crystalline forms of isotactic polypropylene. Die Makromol Chem. 1964;75:134–58.

    Article  Google Scholar 

  35. Stocker W, Schumacher M, Graff S, Thierry A, Wittmann JC, Lotz B. Epitaxial crystallization and AFM investigation of a frustrated polymer structure: isotactic poly (propylene), β phase. Macromolecules. 1998;31:807–14.

    Article  CAS  Google Scholar 

  36. Mathieu C, Thierry A, Wittmann JC, Lotz B. Specificity and versatility of nucleating agents toward isotactic polypropylene crystal phases. J Polym Sci Part B Polym Phys. 2002;40:2504–15.

    Article  CAS  Google Scholar 

  37. Yang R, Ding L, Chen W, Chen L, Zhang X, Li J. Chain folding in main-chain liquid crystalline polyester with strong π–π interaction: An efficient β-nucleating agent for isotactic polypropylene. Macromolecules. 2017;50:1610–7.

    Article  CAS  Google Scholar 

  38. Müller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30:559–603.

    Article  Google Scholar 

  39. Varga J. Melting memory effect of the β-modification of polypropylene. J Therm Anal. 1986;31:165–72.

    Article  CAS  Google Scholar 

  40. Horváth F, Molnár J, Menyhárd A. Polypropylene nucleation. In: Karger-Kocsis J, Bárány T, editors. Polypropylene handbook: morphology, blends and composites. Springer International Publishing: Cham; 2019. p. 121–84.

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingru Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Liang, H. Heterogeneous nucleation and self-nucleation of isotactic polypropylene with addition of nano-ZnO. J Therm Anal Calorim 146, 2115–2126 (2021). https://doi.org/10.1007/s10973-020-10446-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10446-y

Keywords

Navigation