Skip to main content
Log in

Experimental study of pool boiling heat transfer on an annealed TiO2 nanofilm heating surface

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The hydrothermal stability of titanium oxide (TiO2) made it a potential candidate in nanofilm (NF) coating on heating substrate for pool boiling enhancement ramified under passive technique. The objective is to conduct an experimental study on pool boiling of saturated water by the implementation of an annealed TiO2 micro-/nanostructured heating surface for the enhancement of heat transfer between the liquid and the heating surface envisioned as the corollary of annealing. Electron beam physical vapour deposition is employed to synthesize four TiO2 nanofilm-coated substrates of two different thicknesses (500 and 100 nm); among them, one from each thickness is annealed at an inert atmosphere. The test samples are characterized by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy and contact angle metre (dynamic) to understand the morphology, topology and crystallinity and hydrophilicity of the surface. Experimental analysis of heating surfaces revealed that the annealed TiO2 1000 nm micro-/nanostructure-recorded maximum reduction in wall super heat (ΔT) of 52% and enhancement in heat transfer coefficient (h) of 74% than untreated copper substrate also exhibit superior structural stability after several runs rendering annealing a potential method for the amelioration of nucleation and structural stability of heating substrates. As hypothesized, annealing of nanofilm coating improved the structural stability of the NF rendering unwavering boiling performance evident from the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

ΔT :

Wall super heat (K)

\(\emptyset\) :

Microscopic contact angle (°)

HTC:

Heat transfer coefficient (kW m−1 K−1)

k :

Thermal conductivity (W m−2 K−1)

q :

Heat flux (kW m−2)

A :

Area of cross section (m2)

V :

Voltage (V)

I :

Current (A)

d :

Diameter (m)

S:

Surface temperature

L:

Liquid temperature

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

AFM:

Atomic force microscopy

NF:

Nanofilm

EBPVD:

Electron beam physical vapour deposition

ΔT :

Wall superheat

\(\emptyset\) :

Contact angle

References

  1. Li S, et al. Nature-inspired boiling enhancement by novel nanostructured macroporous surfaces. Adv Func Mater. 2008;18(15):2215–20. https://doi.org/10.1002/adfm.200701405.

    Article  CAS  Google Scholar 

  2. Shikida Mitsuhiro. Nano-mechanical method for seeding circular-shaped etch pits on (100) silicon. Sens Mater. 2003;15(1):21–35.

    CAS  Google Scholar 

  3. Saito Y, et al. Simple chemical method for forming silver surfaces with controlled grain sizes for surface plasmon experiments. Langmuir. 2003;19(17):6857–61. https://doi.org/10.1021/la0301240.

    Article  CAS  Google Scholar 

  4. Vemuri Srinivas, Kim Kwang J. Pool boiling of saturated FC-72 on nano-porous surface. Int Commun Heat Mass Transfer. 2005;32(1-2):27–31. https://doi.org/10.1016/j.icheatmasstransfer.2004.03.020.

    Article  CAS  Google Scholar 

  5. Zhang BJ, Kim KJ. Effect of liquid uptake on critical heat flux utilizing a three dimensional, interconnected alumina nano porous surfaces. Appl Phys Lett. 2012;101(5):054104. https://doi.org/10.1063/1.4739946.

    Article  CAS  Google Scholar 

  6. Wu W, et al. Nucleate boiling heat transfer enhancement for water and FC-72 on titanium oxide and silicon oxide surfaces. Int J Heat Mass Transf. 2010;53(9-10):1773–7. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.013.

    Article  CAS  Google Scholar 

  7. Demir E, et al. Effect of silicon nanorod length on horizontal nanostructured plates in pool boiling heat transfer with water. Int J Therm Sci. 2014;82:111–21. https://doi.org/10.1016/j.ijthermalsci.2014.03.015.

    Article  CAS  Google Scholar 

  8. Li Yuan-Yang, Liu Zhen-Hua, Zheng Bao-Chen. Experimental study on the saturated pool boiling heat transfer on nano-scale modification surface. Int J Heat Mass Transf. 2015;84:550–61. https://doi.org/10.1016/j.ijheatmasstransfer.2014.12.064.

    Article  Google Scholar 

  9. Yan Wang, Lin-lin Wang, Ming-yan Liu. Antifouling and enhancing pool boiling by TiO2 coating surface in nanometer scale thickness. AIChE J. 2007;53(12):3062–76. https://doi.org/10.1002/aic.11345.

    Article  CAS  Google Scholar 

  10. Kim SJ, et al. Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf. 2007;50(19–20):4105–16. https://doi.org/10.1016/j.ijheatmasstransfer.2007.02.002.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, et al. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  12. Das S, Kumar DS, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water on silicon oxide nanoparticle coated copper heating surface. Appl Therm Eng. 2016;96:555–67. https://doi.org/10.1016/j.applthermaleng.2015.11.117.

    Article  CAS  Google Scholar 

  13. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

    Article  CAS  Google Scholar 

  14. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

  15. Gajghate SS, et al. Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08740-5.

    Article  Google Scholar 

  16. Salehi H, Hormozi F. Prediction of Al2O3–water nanofluids pool boiling heat transfer coefficient at low heat fluxes by using response surface methodology. J Therm Anal Calorim. 2019;137:1069–82. https://doi.org/10.1007/s10973-018-07993.

    Article  CAS  Google Scholar 

  17. Gupta SK, Misra RD. Effect of two-step electrodeposited Cu–TiO 2 nanocomposite coating on pool boiling heat transfer performance. J Therm Anal Calorim. 2019;136(4):1781–93. https://doi.org/10.1007/s10973-018-7805-7.

    Article  CAS  Google Scholar 

  18. Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure. Appl Therm Eng. 2017;113:1345.

    Article  CAS  Google Scholar 

  19. Das S, Saha B, Bhaumik S. Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure. Exp Thermal Fluid Sci. 2017;81:454–65.

    Article  CAS  Google Scholar 

  20. Christie G. Transport processes and separation process principles. 4th ed. London: Pearson; 2003.

    Google Scholar 

  21. Kline SJ. Describing uncertainty in single sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  22. Shi Bo, Wang Yi-Biao, Chen Kai. Pool boiling heat transfer enhancement with copper nanowire arrays. Appl Therm Eng. 2015;75:115–21. https://doi.org/10.1016/j.applthermaleng.2014.09.040.

    Article  CAS  Google Scholar 

  23. Tang Y, et al. Pool-boiling enhancement by novel metallic nanoporous surface. Exp Thermal Fluid Sci. 2013;44:194–8. https://doi.org/10.1016/j.expthermflusci.2012.06.008.

    Article  CAS  Google Scholar 

  24. Forrest E, et al. Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int J Heat Mass Transf. 2010;53(1–3):58–67. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.008.

    Article  CAS  Google Scholar 

  25. Jo H-J, et al. Nucleate boiling performance on nano/microstructures with different wetting surfaces. Nanoscale Res Lett. 2012;7(1):242. https://doi.org/10.1186/1556-276X-7-242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang Chen-Kang, Lee Chih-Wei, Wang Chung-Kai. Boiling enhancement by TiO2 nanoparticle deposition. Int J Heat Mass Transf. 2011;54(23-24):4895–903. https://doi.org/10.1016/j.ijheatmasstransfer.2011.07.001.

    Article  CAS  Google Scholar 

  27. Feng B, Weaver K, Peterson GP. Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl Phys Lett. 2012;100(5):053120. https://doi.org/10.1063/1.3681943.

    Article  CAS  Google Scholar 

  28. Lee CY, Bhuiya MMH, Kim KJ. Pool boiling heat transfer with nano-porous surface. Int J Heat Mass Transf. 2010;53(19–20):4274–9.

    Google Scholar 

  29. Kim BS, et al. Stable and uniform heat dissipation by nucleate-catalytic nanowires for boiling heat transfer. Int J Heat Mass Transf. 2014;70:23–32. https://doi.org/10.1016/j.ijheatmasstransfer.2013.10.061.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the effort of SAIF, IIT Bombay for SEM measurement facility and IIT Patna for the support of EDX and contact angle estimation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudev Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Johnsan, R., Sujith Kumar, C.S. et al. Experimental study of pool boiling heat transfer on an annealed TiO2 nanofilm heating surface. J Therm Anal Calorim 144, 1073–1082 (2021). https://doi.org/10.1007/s10973-020-09503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09503-3

Keywords

Navigation