Skip to main content
Log in

Flame-retardant polyurethane elastomer based on aluminum salt of monomethylphosphinate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The flame retardancy of polyurethane (PU) elastomer based on aluminum monomethylphosphinate (MeP-Al) was investigated. Thermal analysis, evolved gas analysis (TG-FTIR), flammability tests (LOI, UL 94), heat release rate (HRR) (microcombustion calorimeter), and chemical analysis of residues (SEM–EDX and FTIR) were used to investigate the flame-retardant performance and mechanism of the PU/MeP-Al. Results show that adding MeP-Al endows PU desired flame retardancy and anti-dripping property. The sample containing 20 mass% of MeP-Al passes the UL 94 V0 rating with LOI value of 29.6% and no dripping during combustion. Moreover, the heat release during combustion and the amount of organic volatile from PU decomposition are significantly reduced. The good flame retardancy, anti-dripping property, dramatically a reduction in release of heat and organic compounds are attributed to the efficient action of the MeP-Al in both the gas and condensed phase. In the gas phase, the MeP-Al decomposes into monomethylphosphinic acid to inhibit flame and reduces the heat release. In the condensed phase, MeP-Al turns into the tough aluminum pyrophosphonate and promotes PU to form stable carbonaceous char by interacting with PU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zia KM, Bhatti HN, Bhatti IA. Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym. 2007;67:675–92.

    Article  CAS  Google Scholar 

  2. Chattopadhyay DK, Webster DC. Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci. 2009;34:1068–133.

    Article  CAS  Google Scholar 

  3. Khobragade PS, Hansora DP, Naik JB, Chatterjee A. Flame retarding performance of elastomeric nanocomposites: a review. Polym Degrad Stab. 2016;130:194–244.

    Article  CAS  Google Scholar 

  4. Berta M, Lindsay C, Pans G, Camino G. Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym Degrad Stab. 2006;91:1179–91.

    Article  CAS  Google Scholar 

  5. Ding H, Xia C, Wang J, Chu F. Inherently flame-retardant flexible bio-based polyurethane sealant with phosphorus and nitrogen-containing polyurethane prepolymer. J Mater Sci. 2016;51:5008–18.

    Article  CAS  Google Scholar 

  6. Liu Y, He J, Yang R. Effects of dimethyl methylphosphonate, aluminum hydroxide, ammonium polyphosphate, and expandable graphite on the flame retardancy and thermal properties of polyisocyanurate–polyurethane foams. Ind Eng Chem Res. 2015;54:5876–84.

    Article  CAS  Google Scholar 

  7. Muralidharan B, Laya S, Vigneswari S. Asian J Tex. 2011;1:114–29.

    Article  Google Scholar 

  8. Chen X, Jiang Y, Liu J, Jiao C, Qian S, Li X. Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate. J Therm Anal Calorim. 2015;120:1493–501.

    Article  CAS  Google Scholar 

  9. Duquesne S, Le Bras M, Bourbigot S, Camino G. Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J Appl Polym Sci. 2001;82:3262–74.

    Article  CAS  Google Scholar 

  10. Lubczak JM, Lubczak R. Melamine polyphosphate—the reactive and additive flame retardant for polyurethane foams. Acta Chim Slov. 2016;63:77–87.

    Article  CAS  Google Scholar 

  11. Weferling N, Zhang SM, Chiang CH. Commercial organophosphorus chemicals: status and new developments. Proc Eng. 2016;138:291–301.

    Article  CAS  Google Scholar 

  12. Xu W, Xu B, Wang G, Wang X, Liu L. Synergistic effect of expandable graphite and α-type zirconium phosphate on flame retardancy of polyurethane elastomer. J Appl Polym Sci. 2017;134:45188.

    Article  Google Scholar 

  13. Cao Z, Dong X, Fu T, Deng B, Liao W, Wang Y. Coated vs. naked red phosphorus: a comparative study on their fire retardancy and smoke suppression for rigid polyurethane foams. Polym Degrad Stab. 2017;136:103–11.

    Article  CAS  Google Scholar 

  14. Benin V, Gardelle B, Morgan AB. Heat release of polyurethanes containing potential flame retardants based on boron and phosphorus chemistries. Polym Degrad Stab. 2014;106:108–21.

    Article  CAS  Google Scholar 

  15. Buszard D, Phillips MD, Rose RS, Fallon SB. Blends of tetrahalophthalate esters and phosphorus-containing flame retardants for polyurethane compositions. US Patent 7,423,069. 2008.

  16. Youssef B, Mortaigne B, Soulard M, Saiter JM. Fireproofing of polyurethane by organophosphonates: study of degradation by simultaneously TG/DSC. J Therm Anal Calorim. 2007;90:489–94.

    Article  CAS  Google Scholar 

  17. Döring M, Diederichs J. Non-reactive-fillers. In: Innovative flame retardants in E&E applications, 2nd edn. Belgium: pinfa; 2009. p. 25–26.

  18. Tilliette V, Schmidt LE, Ghoul C, Schaal S. Environmentally friendly flame retardant epoxy for electrical insulation. In: The 2008 IEEE international symposium on electrical insulation. Vancouver; 2008. p. 492–6.

  19. Brehme S, Köppl T, Schartel B, Altstädt V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly (butylene terephthalate) and its glass-fibre composites. E-Polymer. 2014;14:193–208.

    Article  CAS  Google Scholar 

  20. Isitman NA, Dogan M, Bayramli E, Kaynakab C. The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polym Degrad Stab. 2012;97:1285–96.

    Article  CAS  Google Scholar 

  21. Ramani A, Dahoe AE. On flame retardancy in polycaprolactam composites by aluminium diethylphosphinate and melamine polyphosphate in conjunction with organically modified montmorillonite nanoclay. Polym Degrad Stab. 2014;105:1–11.

    Article  CAS  Google Scholar 

  22. Doğan M, Bayraml E. The flame retardant effect of aluminum phosphinate in combination with zinc borate, borophosphate, and nanoclay in polyamide-6. Fire Mater. 2014;38:92–9.

    Article  Google Scholar 

  23. Naik AD, Fontaine G, Samyn F, Delva X, Bourgeois Y. Melamine integrated metal phosphates as non-halogenated flame retardants: synergism with aluminium phosphinate for flame retardancy in glass fiber reinforced polyamide 66. Polym Degrad Stab. 2013;98:2653–62.

    Article  CAS  Google Scholar 

  24. Levchik SV, Weil ED. Thermal decomposition, combustion and flame-retardancy of epoxy resins: a review of the recent literature. Polym Int. 2004;53:1901–29.

    Article  CAS  Google Scholar 

  25. Orhan T, Isitman NA, Hacaloglu J, Kaynak C. Thermal degradation mechanisms of aluminium phosphinate, melamine polyphosphate and zinc borate in poly (methyl methacrylate). Polym Degrad Stab. 2011;96:1780–7.

    Article  CAS  Google Scholar 

  26. Yang W, Jiang Z, Yang J, Yang B, Lu H. Preparation of thermoplastic polyester elastomer/cerium carbonate hydroxide composites containing aluminum phosphinate with improved flame-retardant and mechanical properties. Ind Eng Chem Res. 2015;54:11048–55.

    Article  CAS  Google Scholar 

  27. Aslzadeh MM, Abdouss M, Sadeghi GMM. Preparation and characterization of new flame retardant polyurethane composite and nanocomposite. J Appl Polym Sci. 2013;127:1683–90.

    Article  CAS  Google Scholar 

  28. Bauer H, Hoerold S, Sicken M. Mixtures of aluminum hydrogenphosphites with aluminum salts, process for the production thereof and the use thereof. US Patent 9,505,904. 2016.

  29. Braun U, Schartel B, Fichera MA, Jäger C. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6. Polym Degrad Stab. 2007;92:1528–45.

    Article  CAS  Google Scholar 

  30. Braun U, Schartel B. Flame retardancy mechanisms of aluminium phosphinate in combination with melamine cyanurate in glass-fiber-reinforced poly (1,4-butylene terephthalate). Macromol Mater Eng. 2008;293:206–17.

    Article  CAS  Google Scholar 

  31. Braun U, Bahr H, Sturm H, Schartel B. Flame retardancy mechanisms of metal phosphinates and metal phosphinates in combination with melamine cyanurate in glass-fiber reinforced poly (1, 4-butylene terephthalate): the influence of metal cation. Polym Adv Technol. 2008;19:680–92.

    Article  CAS  Google Scholar 

  32. Li H, Ning N, Zhang L, Wang Y, Liang W. Different flame retardancy effects and mechanisms of aluminium phosphinate in PPO, TPU and PP. Polym Degrad Stab. 2014;105:86–95.

    Article  CAS  Google Scholar 

  33. Liu X, Liu J, Sun S, Chen J, Cai S. Novel flame-retardant epoxy based on zinc methylethyl phosphinate. Fire Mater. 2014;38:599–608.

    Article  CAS  Google Scholar 

  34. Liu X, Liu J, Chen J, Cai S, Hu C. Novel flame-retardant epoxy composites containing aluminium β-carboxylethylmethylphosphinate. Polym Eng Sci. 2015;55:657–63.

    Article  CAS  Google Scholar 

  35. Bartels G. Process for the preparation of α-aminoalkylphosphonic acids and of α-amino- alkylphosphinic acids. US Patent 4,960,920. 1990.

  36. Hong S, Ku J, Bae, SH, Choi JH, Kim JH. Salt of carboxyethyl phosphinate ester and flame retardant thermoplastic resin composition containing the same. US Patent 7,939,588. 2011.

  37. Hu Q, Peng P, Peng S, Liu J, Liu X. Flame-retardant epoxy resin based on aluminum monomethylphosphinate. J Therm Anal Calorim. 2017;128:201–10.

    Article  CAS  Google Scholar 

  38. Ionkin AS, Marshall WJ, Fish BM. Divalent germanium and tin compounds stabilized by sterically bulky P∧O, PO∧O, PS∧O, and PN∧O ligands: synthesis and first insights into catalytic application to polyurethane systems. Organometallics. 2006;25:4170–8.

    Article  CAS  Google Scholar 

  39. Levchik SV, Weil ED. Thermal decomposition, combustion and fire-retardancy of polyurethanes—a review of the recent literature. Polym Int. 2004;53:1585–610.

    Article  CAS  Google Scholar 

  40. Bilbao R, Mastral JF, Ceamanos J, Aldea ME. Kinetics of the thermal decomposition of polyurethane foams in nitrogen and air atmospheres. J Anal Appl Pyrol. 1996;37:69–82.

    Article  CAS  Google Scholar 

  41. Gjurova K, Bechev C, Troev K, et al. Thermal decomposition of polyurethane elastomers containing antipyrene. J Therm Anal Calorim. 1983;27:367–77.

    Article  CAS  Google Scholar 

  42. Liang S, Neisius M, Mispreuve H, Naescher R, Gaan S. Flame retardancy and thermal decomposition of flexible polyurethane foams: structural influence of organophosphorus compounds. Polym Degrad Stab. 2012;97:2428–40.

    Article  CAS  Google Scholar 

  43. Berlin KD, Morgan JG, Peterson ME, Pivonka WC. Mechanism of decomposition of alkyl diphenylphosphinates. J Org Chem. 1969;34:1266–71.

    Article  CAS  Google Scholar 

  44. Nodera A, Kanai T. Thermal decomposition behavior and flame retardancy of polycarbonate containing organic metal salts: effect of salt composition. J Appl Polym Sci. 2004;94:2131–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the national high-tech R&D program of China (863 program) (2016YFB0401505).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyan Liu or Xueqing Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Zou, L., Liu, Z. et al. Flame-retardant polyurethane elastomer based on aluminum salt of monomethylphosphinate. J Therm Anal Calorim 143, 2953–2961 (2021). https://doi.org/10.1007/s10973-020-09480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09480-7

Keywords

Navigation