Skip to main content
Log in

Effect of temperature, humidity and pressure on electric properties of the cells based on PTB7-Th, PC61BM and graphene composite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, fabrication and characterization of Cu/PTB7-Th (35 mass%)/PC\(_{61}\)BM (35 mass%)/graphene (30 mass%)/Ag thin-film composite cells are given. First of all, Ag and Cu electrodes were deposited on flat glass substrate by vacuum evaporation with 130-\(\upmu \)m inter-electrode gap. The PTB7-Th (35 mass%) composite and PC\(_{61}\)BM (35 mass%) composite in chlorobenzene and graphene (30 mass%) were deposited on the inter-electrode gap by drop-casting technique, and film thickness of 8–12 \(\upmu \)m was achieved. The dependence of forward and reverse bias resistance of the cells versus temperature in the range of 25–75 \({^{\circ }}\)C, humidity in the range of 47–90 %RH and pressure in the range of 0–7.7 kN m\(^{-2}\) was measured. The average temperature resistance coefficients were equal to (− 1.03)% \({^{\circ }}\hbox {C}^{-1}\) and \((-\,1.14)\%\ {^{\circ }}\hbox {C}^{-1}\) for forward and reverse bias resistances, respectively. The reverse and forward bias resistances decreased 1.29 and 1.27 times due to \(\%\mathrm{RH}\), and due to pressure, it decreased by 9.0–9.2%. Impedance (Z) of the sample was also measured at different frequencies (100 Hz, 1 kHz, 10  kHz and 100 kHz) which decreased from 1.23 to 1.04 times. The obtained results are explained, firstly, by transfer of charges between donors and acceptors molecules and effect of water molecules on the PTB7-Th (35 mass%):PC\(_{61}\)BM (35 mass%):graphene composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li Y, et al. Fluorine-induced highly reproducible resistive switching performance: facile morphology control through the transition between J- and H-aggregation. ACS Appl Mater Interfaces. 2017;9(11):9926–34.

    Article  CAS  Google Scholar 

  2. Wang J-T, et al. Stretchable conjugated rodcoil poly (3-hexylthiophene)-block-poly (butyl acrylate) thin films for field effect transistor applications. Macromolecules. 2017;50(4):1442–52.

    Article  CAS  Google Scholar 

  3. Wood S, Hollis JR, Kim J-S. Raman spectroscopy as an advanced structural nanoprobe for conjugated molecular semiconductors. J Phys D Appl Phys. 2017;50(7):073001.

    Article  Google Scholar 

  4. He Z, et al. Single-junction polymer solar cells with high efficiency and photovoltage. Nat Photon. 2015;9(3):174.

    Article  CAS  Google Scholar 

  5. Petraki F, Papaefthimiou V, Kennou S. The electronic structure of Ni-phthalocyanine/metal interfaces studied by X-ray and ultraviolet photoelectron spectroscopy. Organ Electron. 2007;8(5):522–8.

    Article  CAS  Google Scholar 

  6. Lee CW, Kim OY, Lee JY. Organic materials for organic electronic devices. J Ind Eng Chem. 2014;20(4):1198–208.

    Article  CAS  Google Scholar 

  7. Tye RP, Gardner RL, Maesono A. Temperature measurement and control. J Therm Anal Calorim. 1993;40:1009–16.

    Article  CAS  Google Scholar 

  8. Dhurandher BK, et al. Investigation of thermal equilibrium in a compartment involving crib fire. J Therm Anal Calorim. 2017;129(3):1787–97.

    Article  CAS  Google Scholar 

  9. Nazoktabar M, Arshtabar K, Mohammadkhani H. Investigating the effect of coolants heat transfer type on thermostat placement. J Therm Anal Calorim. 2020;139:2519–26.

    Article  CAS  Google Scholar 

  10. Yi F, Friedman LH, Chen R, LaVan DA. Sample pattern and temperature distribution in nanocalorimetry measurements. J Therm Anal Calorim. 2019;138(5):3367–73.

    Article  CAS  Google Scholar 

  11. Li Q, et al. Review of flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater. 2017;6(12):1601371.

    Article  Google Scholar 

  12. Sadasivuni KK, et al. Reduced graphene oxide filled cellulose films for flexible temperature sensor application. Synth Metals. 2015;206:154–61.

    Article  CAS  Google Scholar 

  13. Takei K, et al. Toward flexible and wearable humaninteractive healthmonitoring devices. Adv Healthc Mater. 2015;4(4):487–500.

    Article  CAS  Google Scholar 

  14. Yokota T, et al. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements. Proc Natl Acad Sci. 2015;112(47):14533–8.

    Article  CAS  Google Scholar 

  15. Zhang Y, et al. Theoretical and experimental studies of epidermal heat flux sensors for measurements of core body temperature. Adv Healthc Mater. 2016;5(1):119–27.

    Article  CAS  Google Scholar 

  16. Li G, Zhu R, Yang Y. Polymer solar cells. Nat Photon. 2012;6(3):153.

    Article  CAS  Google Scholar 

  17. Liao SH, et al. Fullerene derivative doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low bandgap polymer (PTB7Th) for high performance. Adv Mater. 2013;25(34):4766–71.

    Article  CAS  Google Scholar 

  18. Li N, Brabec CJ. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10 percent. Energy Environ Sci. 2015;8(10):2902–9.

    Article  CAS  Google Scholar 

  19. Liao S-H, et al. Single junction inverted polymer solar cell reaching power conversion efficiency 10.31% by employing dual-doped zinc oxide nano-film as cathode interlayer. Sci Rep. 2014;4:6813.

    Article  CAS  Google Scholar 

  20. Luo B, et al. Colorful flexible polymer tandem solar cells. J Mater Chem C. 2017;5(31):7884–9.

    Article  CAS  Google Scholar 

  21. Nam S, et al. Inverted polymer fullerene solar cells exceeding 10% efficiency with poly (2-ethyl-2-oxazoline) nanodots on electron-collecting buffer layers. Nat Commun. 2015;6:8929.

    Article  CAS  Google Scholar 

  22. Wang J, et al. FAPbCl\(_3\) perovskite as alternative interfacial layer for highly efficient and stable polymer solar cells. Adv Electron Mater. 2016;2(11):1600329.

    Article  Google Scholar 

  23. Aziz F, et al. Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Measur Sci Technol. 2011;23(1):014001.

    Article  Google Scholar 

  24. Brütting W. Physics of organic semiconductors. New York: Wiley; 2006.

    Google Scholar 

  25. Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS, editors. Organic photovoltaics: concepts and realization. Heidelberg: Springer; 2003.

    Google Scholar 

  26. Wan Q, et al. 10.8% Efficiency polymer solar cells based on PTB7Th and PC71BM via binary solvent additives treatment. Adv Funct Mater. 2016;26(36):6635–40.

    Article  CAS  Google Scholar 

  27. Farahani H, Wagiran R, Hamidon MN. Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors. 2014;14(5):7881–939.

    Article  Google Scholar 

  28. Karimov KS, et al. Ag/PEPC/NiPc/ZnO/Ag thin film capacitive and resistive humidity sensors. J Semicond. 2010;31(5):054002.

    Article  Google Scholar 

  29. Fernandes L, et al. Thermal stability of low-bandgap copolymers PTB7 and PTB7-Th and their bulk heterojunction composites. Polym Bull. 2018;75(2):515–32.

    Article  CAS  Google Scholar 

  30. Irwin JD, Wu C-H. Basic engineering circuit analysis. New York: Wiley; 1999.

    Google Scholar 

  31. Khan SB, et al. Impedimetric sensing of humidity and temperature using CeO\(_2\)Co\(_3\)O\(_4\) nanoparticles in polymer hosts. Microchim Acta. 2015;182(11–12):2019–26.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the GIK Institute of Engineering Sciences and Technology, Topi, Swabi, Khyber Pakhtunkhwa 23640, for supporting this work and providing the necessary research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khasan S. Karimov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimov, K.S., Riaz, M. & Nabi, JU. Effect of temperature, humidity and pressure on electric properties of the cells based on PTB7-Th, PC61BM and graphene composite. J Therm Anal Calorim 143, 3033–3038 (2021). https://doi.org/10.1007/s10973-020-09467-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09467-4

Keywords

Navigation