Skip to main content
Log in

Thermo-hydraulic analysis and optimization of CuO/water nanofluid inside helically dimpled heat exchangers

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of dimple technology and the use of nanofluids in different heat exchanging systems are known as powerful tools for improving heat transfer and fluid flow conditions. This work aims to prepare a comprehensive thermo-hydraulic parametric study and optimization of CuO/water nanofluid flow inside dimpled heat exchangers. The modeling procedure is based on the combination of the heat and mass transfer, fluid flow characteristics as well as the second law of thermodynamics. The parametric study is done for evaluating three thermo-hydraulic criteria (i.e., entropy generation number, Bejan number and irreversibility distribution ratio) with changing some of the most important fluid conditions (namely Reynolds number, average flow temperature and nanofluid concentration) as well as pitch ratio of the heat exchanger. Finally, the optimization is done through the combination of entropy generation minimization approach and genetic algorithm method. The results indicate that among the decision parameters, the average flow temperature and the pitch ratio have the lowest and highest effect on the entropy generation, respectively. From the optimization process, the optimum values of Reynolds number, dimensionless average flow temperature, nanofluid concentration and pitch ratio are 4610.428, 1.077, 0.000216 and 0.00326, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Cross-sectional area (m2)

BN:

Bejan number (–)

c :

Specific heat (J kg−1 K−1)

d :

Diameter of dimples (m)

D h :

Hydraulic diameter (m)

EGN:

Entropy generation number (–)

(EGN)F :

Frictional entropy generation number (–)

(EGN)H :

Thermal entropy generation number (–)

f :

Friction factor (–)

h :

Heat transfer coefficient (W m−2 K−1)

IDR:

Irreversibility distribution ratio (–)

k :

Thermal conductivity (W m−1 K−1)

L :

Heat exchanger length (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Nu:

Nusselt number (–)

Pr:

Prandtl number (–)

Q :

Dimensionless heat flux (–)

q′:

Heat transfer per unit length (W m−1)

Re:

Reynolds number (–)

\(\dot{S}_{\text{G}}^{\prime }\) :

Entropy generation rate per unit length (W m−1 K−1)

\(\dot{S}_{\text{G,H}}\) :

Entropy generation rate due to the fluid friction (W K−1)

\(\dot{S}_{\text{G,F}}\) :

Entropy generation rate due to the heat transfer (W K−1)

St:

Stanton number (–)

T :

Average flow temperature (K)

\(\forall\) :

Volume (m3)

φ :

Nanoparticle volumetric concentration (%)

μ :

Viscosity (N s m−2)

\({\mathcal{P}}\) :

Heat exchanger pitch ratio (–)

ρ :

Density (kg m−3)

θ :

Dimensionless flow average temperature (–)

ξ :

Duty parameter of heat exchanger (–)

BF:

Basefluid

fr:

Freezing point of the base fluid

min:

Minimum

NF:

Nanofluid

opt:

Optimum

P :

Nanoparticle

References

  1. Yousefi M, Hajizadeh A, Soltani M. Energy management strategies for smart home regarding uncertainties: state of the art, trends, and challenges. In: 2018 IEEE international conference on industrial technology, pp 1219–25.

  2. Yousefi M, Hajizadeh A, Soltani MN. A comparison study on stochastic modeling methods for home energy management systems. IEEE Trans Ind Inform. 2019;15:4799–808.

    Article  Google Scholar 

  3. Ji WT, Jacobi AM, He YL, Tao WQ. Summary and evaluation on single-phase heat transfer enhancement techniques of liquid laminar and turbulent pipe flow. Int J Heat Mass Transf. 2015;88:735–54.

    Article  Google Scholar 

  4. Ebrahimi-Moghadam A, Moghadam AJ, Farzaneh-Gord M, Aliakbari K. Proposal and assessment of a novel combined heat and power system: energy, exergy, environmental and economic analysis. Energy Convers Manag. 2020;204:112307. http://www.sciencedirect.com/science/article/pii/S0196890419313135.

  5. Wang Y, He YL, Lei YG, Li R. Heat transfer and friction characteristics for turbulent flow of dimpled tubes. Chem Eng Technol. 2009;32:956–63.

    Article  CAS  Google Scholar 

  6. Rashidi S, Javadi P, Esfahani JA. Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate. J Therm Anal Calorim. 2019;135:551–63. https://doi.org/10.1007/s10973-018-7164-4.

    Article  CAS  Google Scholar 

  7. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2019;135:1009–19. https://doi.org/10.1007/s10973-018-7350-4.

    Article  CAS  Google Scholar 

  8. Suresh S, Chandrasekar M, Chandra Sekhar S. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube. Exp Therm Fluid Sci. 2011;35:542–9.

    Article  CAS  Google Scholar 

  9. Vicente PG, Garcı́a A, Viedma A. Experimental study of mixed convection and pressure drop in helically dimpled tubes for laminar and transition flow. Int J Heat Mass Transf. 2002;45:5091–105.

    Article  CAS  Google Scholar 

  10. Mahmood GI, Ligrani PM. Heat transfer in a dimpled channel: Combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure. Int J Heat Mass Transf. 2002;45:2011–20.

    Article  Google Scholar 

  11. Vicente PG, García A, Viedma A. Heat transfer and pressure drop for low Reynolds turbulent flow in helically dimpled tubes. Int J Heat Mass Transf. 2002;45:543–53.

    Article  CAS  Google Scholar 

  12. Rashidi S, Hormozi F, Sundén B, Mahian O. Energy saving in thermal energy systems using dimpled surface technology—a review on mechanisms and applications. Appl Energy. 2019;250:1491–547. http://www.sciencedirect.com/science/article/pii/S0306261919308268.

  13. Li Q, Xuan Y. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21:58–64.

    Article  Google Scholar 

  14. Ebrahimi-Moghadam A, Moghadam AJ. Optimal design of geometrical parameters and flow characteristics for Al2O3/water nanofluid inside corrugated heat exchangers by using entropy generation minimization and genetic algorithm methods. Appl Therm Eng. 2019;149:889–98.

    Article  CAS  Google Scholar 

  15. Rashidi S, Bovand M, Esfahani JA. Opposition of Magnetohydrodynamic and AL2O3–water nanofluid flow around a vertex facing triangular obstacle. J Mol Liq. 2016;215:276–84. http://www.sciencedirect.com/science/article/pii/S0167732215308291.

  16. Andreozzi A, Manca O, Nardini S, Ricci D. Forced convection enhancement in channels with transversal ribs and nanofluids. Appl Therm Eng. 2016;98:1044–53. http://www.sciencedirect.com/science/article/pii/S1359431116000351.

  17. Li Z, Sheikholeslami M, Jafaryar M, Shafee A, Chamkha AJ. Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J Mol Liq. 2018;266:797–805.

    Article  CAS  Google Scholar 

  18. Parizad Laein R, Rashidi S, Abolfazli Esfahani J. Experimental investigation of nanofluid free convection over the vertical and horizontal flat plates with uniform heat flux by PIV. Adv Powder Technol. 2016;27:312–22. http://www.sciencedirect.com/science/article/pii/S0921883115002745.

  19. Bunker RS, Donnellan KF. Heat transfer and friction factors for flows inside circular tubes with concavity surfaces. J Turbomach. 2003;125:665.

    Article  Google Scholar 

  20. Li R, He Y-L, Lei YG, Tao YB, Chu P. A numerical study on fluid flow and heat transfer performance of internally roughened tubes with dimples. J Enhanc Heat Transf. 2009;16:267–85.

    Article  CAS  Google Scholar 

  21. Bellos E, Tzivanidis C, Antonopoulos KA, Gkinis G. Thermal enhancement of solar parabolic trough collectors by using nanofluids and converging-diverging absorber tube. Renew Energy. 2016;94:213–22.

    Article  CAS  Google Scholar 

  22. Suresh S, Chandrasekar M, Selvakumar P. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube. Heat Mass Transf Stoffuebertragung. 2012;48:683–94.

    Article  CAS  Google Scholar 

  23. Li P, Zhang D, Xie Y. Heat transfer and flow analysis of Al2O3-water nanofluids in microchannel with dimple and protrusion. Int J Heat Mass Transf. 2014;73:456–67.

    Article  CAS  Google Scholar 

  24. Kim KY, Shin DY. Optimization of a staggered dimpled surface in a cooling channel using Kriging model. Int J Therm Sci. 2008;47:1464–72.

    Article  Google Scholar 

  25. Lee KD, Kim KY. Objective function proposed for optimization of convective heat transfer devices. Int J Heat Mass Transf. 2012;55:2792–9.

    Article  Google Scholar 

  26. Li M, Khan TS, Al Hajri E, Ayub ZH. Geometric optimization for thermal-hydraulic performance of dimpled enhanced tubes for single phase flow. Appl Therm Eng. 2016;103:639–50.

    Article  Google Scholar 

  27. Luo L, Du W, Wang S, Wang L, Sundén B, Zhang X. Multi-objective optimization of a solar receiver considering both the dimple/protrusion depth and delta-winglet vortex generators. Energy. 2017;137:1–19.

    Article  Google Scholar 

  28. Ming T, Cai C, Yang W, Shen W, Feng W, Zhou N. Optimization of dimples in microchannel heat sink with impinging jets—part B: the influences of dimple height and arrangement. J Therm Sci. 2018;27:321–30.

    Article  Google Scholar 

  29. Bejan A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int J Energy Res. 2002;26:0–43.

    Article  Google Scholar 

  30. Zheng N, Liu P, Shan F, Liu Z, Liu W. Numerical investigations of the thermal-hydraulic performance in a rib-grooved heat exchanger tube based on entropy generation analysis. Appl Therm Eng. 2016;99:1071–85. http://www.sciencedirect.com/science/article/pii/S1359431116301314.

  31. Farzaneh-Gord M, Ameri H, Arabkoohsar A. Tube-in-tube helical heat exchangers performance optimization by entropy generation minimization approach. Appl Therm Eng. 2016;108:1279–87.

    Article  Google Scholar 

  32. Chen L, Yang A, Xie Z, Sun F. Constructal entropy generation rate minimization for cylindrical pin-fin heat sinks. Int J Therm Sci. 2017;111:168–74. http://www.sciencedirect.com/science/article/pii/S129007291630597X.

  33. Mwesigye A, Bello-Ochende T, Meyer JP. Heat transfer and entropy generation in a parabolic trough receiver with wall-detached twisted tape inserts. Int J Therm Sci. 2016;99:238–57. http://www.sciencedirect.com/science/article/pii/S1290072915002604.

  34. Mohseni-Gharyehsafa B, Ebrahimi-Moghadam A, Okati V, Farzaneh-Gord M, Ahmadi MH, Lorenzini G. Optimizing flow properties of the different nanofluids inside a circular tube by using entropy generation minimization approach. J Therm Anal Calorim. 2019;135:801–11.

    Article  CAS  Google Scholar 

  35. Ebrahimi-Moghadam A, Kowsari S, Farhadi F, Deymi-Dashtebayaz M. Thermohydraulic sensitivity analysis and multi-objective optimization of Fe3O4/H2O nanofluid flow inside U-bend heat exchangers with longitudinal strip inserts. Appl Therm Eng. 2020;164:114518. http://www.sciencedirect.com/science/article/pii/S1359431119341389.

  36. Ebrahimi-Moghadam A, Mohseni-Gharyehsafa B, Farzaneh-Gord M. Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al2O3-EG/W nanofluid flow inside parabolic trough solar collector. Renew Energy. 2018;129:473–85.

    Article  CAS  Google Scholar 

  37. Sodagar-Abardeh J, Ebrahimi-Moghadam A, Farzaneh-Gord M, Norouzi A. Optimizing chevron plate heat exchangers based on the second law of thermodynamics and genetic algorithm. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08742-3.

    Article  Google Scholar 

  38. Bovand M, Rashidi S, Esfahani JA. Optimum interaction between magnetohydrodynamics and nanofluid for thermal and drag management. J Thermophys Heat Transf. 2016;31:218–29. https://doi.org/10.2514/1.T4907.

    Article  Google Scholar 

  39. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2018;132:1189–200. https://doi.org/10.1007/s10973-017-6907-y.

    Article  CAS  Google Scholar 

  40. Dormohammadi R, Farzaneh-Gord M, Ebrahimi-Moghadam A, Ahmadi MH. Heat transfer and entropy generation of the nanofluid flow inside sinusoidal wavy channels. J Mol Liq. 2018;269:229–40. https://linkinghub.elsevier.com/retrieve/pii/S0167732218331210.

  41. Alkanhal TA, Sheikholeslami M, Arabkoohsar A, Haq R, Shafee A, Li Z, et al. Simulation of convection heat transfer of magnetic nanoparticles including entropy generation using CVFEM. Int J Heat Mass Transf. 2019;136:146–56. http://www.sciencedirect.com/science/article/pii/S0017931018362495.

  42. Vajjha RS, Das DK, Kulkarni DP. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int J Heat Mass Transf. 2010;53:4607–18.

    Article  CAS  Google Scholar 

  43. Kordi M, Moghadam AJ, Afshari E. Effects of cooling passages and nanofluid coolant on thermal performance of polymer electrolyte membrane fuel cells. J Electrochem Energy Convers Storage ASME. 2019;16:31001–11. https://doi.org/10.1115/1.4042254.

    Article  CAS  Google Scholar 

  44. Dalvand HM, Moghadam AJ. Experimental investigation of a water/nanofluid jacket performance in stack heat recovery. J Therm Anal Calorim. 2019;135:657–69. https://doi.org/10.1007/s10973-018-7220-0.

    Article  CAS  Google Scholar 

  45. Khan MI, Shah F, Waqas M, Hayat T, Alsaedi A. The role of γAl2O3–H2O and γAl2O3–C2H6O2 nanomaterials in Darcy–Forchheimer stagnation point flow: an analysis using entropy optimization. Int J Therm Sci. 2019;140:20–7. http://www.sciencedirect.com/science/article/pii/S1290072918302916.

  46. Kelidari M, Moghadam AJ. Effects of Fe3O4/water nanofluid on the efficiency of a curved pipe. J Therm Sci Eng Appl ASME. 2019;11:41016–8. https://doi.org/10.1115/1.4044184.

    Article  CAS  Google Scholar 

  47. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52:789–93.

    Article  CAS  Google Scholar 

  48. Mahian O, Kianifar A, Kleinstreuer C, Al-Nimr MA, Pop I, Sahin AZ, et al. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013;65:514–32. http://www.sciencedirect.com/science/article/pii/S0017931013004778.

  49. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28. Available from: http://www.sciencedirect.com/science/article/pii/S0017931011002699.

  50. Javan S, Mohamadi V, Ahmadi P, Hanafizadeh P. Fluid selection optimization of a combined cooling, heating and power (CCHP) system for residential applications. Appl Therm Eng. 2016;96:26–38.

    Article  CAS  Google Scholar 

  51. Mwesigye A, Huan Z. Thermodynamic analysis and optimization of fully developed turbulent forced convection in a circular tube with water–Al2O3 nanofluid. Int J Heat Mass Transf. 2015;89:694–706. http://www.sciencedirect.com/science/article/pii/S0017931015005931.

  52. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51. http://www.sciencedirect.com/science/article/pii/S089417771630070X.

  53. Haddad Z, Abu-Nada E, Oztop HF, Mataoui A. Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement? Int J Therm Sci. 2012;57:152–62. http://www.sciencedirect.com/science/article/pii/S1290072912000397.

  54. Thianpong C, Eiamsa-ard P, Wongcharee K, Eiamsa-ard S. Compound heat transfer enhancement of a dimpled tube with a twisted tape swirl generator. Int Commun Heat Mass Transf. 2009;36:698–704.

    Article  CAS  Google Scholar 

  55. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press; 1995.

    Google Scholar 

  56. Wang W, Zhang Y, Liu J, Li B, Sundén B. Numerical investigation of entropy generation of turbulent flow in a novel outward corrugated tube. Int J Heat Mass Transf. 2018;126:836–47. http://www.sciencedirect.com/science/article/pii/S0017931018308275.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Ebrahimi-Moghadam or Ali Jabari Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deymi-Dashtebayaz, M., Akhoundi, M., Ebrahimi-Moghadam, A. et al. Thermo-hydraulic analysis and optimization of CuO/water nanofluid inside helically dimpled heat exchangers. J Therm Anal Calorim 143, 4009–4024 (2021). https://doi.org/10.1007/s10973-020-09398-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09398-0

Keywords

Navigation