Skip to main content
Log in

Thermal kinetics involved during the solid-state synthesis of Cr2AlC MAX phase

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The formation of nanolaminated Cr2AlC MAX phase by using solid-state synthesis route has been investigated through thermal analysis technique. The mixture of chromium (Cr), aluminum (Al) and graphite (C) in 2:1.4:1 was subjected to differential thermal analysis in an argon atmosphere and heated up to 1250 °C, at multiple heating rates (10, 20, 30, 40 °C min−1). Two endothermic peaks (~ 666 °C and ~ 1053 °C) are observed during the synthesis of Cr2AlC MAX phase. The formation of Cr2AlC is also confirmed through XRD, FESEM, HR-TEM and SAED analysis. The kinetic triplets (activation energy, pre-exponential factor and reaction mechanism) involved during the synthesis of Cr2AlC were estimated. The activation energy and reaction mechanism were determined by using iso-conversional model-free methods (KAS, FWO and FR methods) and integral master plot method, respectively. The results indicated that F2 (second-order) reaction mechanism dominates the formation of Cr2AlC MAX phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhong Y, Xia XH, Shi F, Zhan JY, Tu JP, Fan HJ. Transition metal carbides and nitrides in energy storage and conversion. Adv Sci. 2015;1500286:1–28.

    Google Scholar 

  2. Chen CY, Yen HW, Kao FH, Li WC, Huang CY, Yang JR, et al. Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides. Mater Sci Eng A. 2009;499:162–6.

    Google Scholar 

  3. Wuchina E, Opila E, Opeka M, Fahrenholtz W, Talmy I. UHTCs: Ultra-high temperature ceramic materials for extreme environment applications. Electrochem Soc Interface. 2007;16:30–6.

    CAS  Google Scholar 

  4. Pierson HO. The refractory carbides. In: Handbook of refractory carbides nitrides. 1st ed. Norwich: Noyes Publication; 1996. pp. 8–16.

  5. Gogotsi YG, Andrievski RA. Materials science of carbides, Nitrides and borides. Netherlands: Springer;  2011.

    Google Scholar 

  6. Vogt U. Carbide, nitride and boride materials—synthesis and processing. J Eur Ceram Soc. 2002;18:735–6.

    Google Scholar 

  7. Griseri M, Tunca B, Lapauw T, Huang S, Popescu L, Barsoum MW, et al. Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase. J Eur Ceram Soc. 2019;39:2973–81.

    CAS  Google Scholar 

  8. Xu B, Chen Q, Li X, Meng C, Zhang H, Xu M, et al. Synthesis of single-phase Ti3SiC2 from coarse elemental powders and the effects of excess Al. Ceram Int. 2019;45:948–53.

    CAS  Google Scholar 

  9. Guo L, Yan Z, Wang X, He Q. Ti2AlC MAX phase for resistance against CMAS attack to thermal barrier coatings. Ceram Int. 2019;45:7627–34.

    CAS  Google Scholar 

  10. Tunca B, Lapauw T, Delville R, Neuville DR, Hennet L, Thiaudière D, et al. Synthesis and characterization of double solid solution (Zr, Ti)2(Al, Sn)C MAX phase ceramics. Inorg Chem. 2019;58:6669–83.

    CAS  PubMed  Google Scholar 

  11. Meshkian R, Tao Q, Dahlqvist M, Lu J, Hultman L, Rosen J. Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC2 MXene. Acta Mater. 2017;125:476–80.

    CAS  Google Scholar 

  12. Gonzalez-Julian J, Go T, Mack DE, Vaßen R. Environmental resistance of Cr2AlC MAX phase under thermal gradient loading using a burner rig. J Am Ceram Soc. 2018;101:1841–6.

    CAS  Google Scholar 

  13. Radovic M, Barsoum MW. MAX phases: bridging the gap between metals and ceramics. Am Ceram Soc Bull. 2013;92:20–7.

    CAS  Google Scholar 

  14. Barsoum MW. The Mn+1AXn phases: a new class of solids: thermodynamically stable nanolaminates. Prog Solid State Chem. 2000;28:201–81.

    CAS  Google Scholar 

  15. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature. 2015;516:78–81.

    Google Scholar 

  16. Mashtalir O, Naguib M, Mochalin VN, Dall’Agnese Y, Heon M, Barsoum MW, et al. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4:1716.

    PubMed  Google Scholar 

  17. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23:4248–53.

    CAS  PubMed  Google Scholar 

  18. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, et al. Two-dimensional transition metal carbides. ACS Nano. 2012;6:1322–31.

    CAS  PubMed  Google Scholar 

  19. Anasori B, Lukatskaya MR, Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater. 2017;16098:1–17.

    Google Scholar 

  20. Barsoum MW. MAX phases: properties of machinable carbides and nitrides. Singapore: Wiley-VCH; 2013.

    Google Scholar 

  21. Tallman DJ, Anasori B, Barsoum MW. A critical review of the oxidation of Ti2AlC, Ti3AlC2 and Cr2AlC in Air. Mater Res Lett. 2013;1:115–25.

    CAS  Google Scholar 

  22. Pei R, McDonald SA, Shen L, van der Zwaag S, Sloof WG, Withers PJ, et al. Crack healing behaviour of Cr2AlC MAX phase studied by X-ray tomography. J Eur Ceram Soc. 2017;37:441–50.

    CAS  Google Scholar 

  23. Li S, Xiao L, Song G, Wu X, Sloof WG, Van Der Zwaag S. Oxidation and crack healing behavior of a fine-grained Cr2AlC ceramic. J Am Ceram Soc. 2013;96:892–9.

    CAS  Google Scholar 

  24. Tian WB, Sun ZM, Du Y, Hashimoto H. Synthesis reactions of Cr2AlC from Cr–Al4C3–C by pulse discharge sintering. Mater Lett. 2008;62:3852–5.

    CAS  Google Scholar 

  25. Tian W, Wang P, Zhang G, Kan Y, Li Y, Yan D. Synthesis and thermal and electrical properties of bulk Cr2AlC. Scr Mater. 2006;54:841–6.

    CAS  Google Scholar 

  26. Tian WB, Wang PL, Zhang GJ, Kan YM, Li YX. Mechanical properties of Cr2AlC ceramics. J Am Ceram Soc. 2007;90:1663–6.

    CAS  Google Scholar 

  27. Sarwar J, Shrouf T, Srinivasa A, Gao H, Radovic M, Kakosimos K. Characterization of thermal performance, flux transmission performance and optical properties of MAX phase materials under concentrated solar irradiation. Sol Energy Mater Sol Cells. 2018;182:76–91.

    CAS  Google Scholar 

  28. Liu J, Zuo X, Wang Z, Wang L, Wu X, Ke P, et al. Fabrication and mechanical properties of high purity of Cr2AlC coatings by adjustable Al contents. J Alloys Compd. 2018;753:11–7.

    CAS  Google Scholar 

  29. Tian WB, Wang PL, Kan YM, Zhang GJ, Li YX, Yan DS. Phase formation sequence of Cr2AlC ceramics starting from Cr–Al–C powders. Mater Sci Eng A. 2007;443:229–34.

    Google Scholar 

  30. Lin Z, Zhou Y, Li M, Wang J. In-situ hot pressing/solid-liquid reaction synthesis of bulk Cr2AlC. Z für Met. 2005;96:291–6.

    CAS  Google Scholar 

  31. Yembadi R, Panigrahi BB. Thermodynamic assessments and mechanically activated synthesis of ultrafine Cr2AlC MAX phase powders. Adv Powder Technol. 2017;28:732–9.

    CAS  Google Scholar 

  32. Aksu Demirezen D, Yıldız YŞ, Demirezen Yılmaz D. Amoxicillin degradation using green synthesized iron oxide nanoparticles: kinetics and mechanism analysis. Environ Nanotechnol Monit Manag. 2019;11:100219.

    Google Scholar 

  33. Wang X, Huang Z, Wei M, Lu T, Nong D, Zhao J, et al. Catalytic effect of nanosized ZnO and TiO2 on thermal degradation of poly(lactic acid) and isoconversional kinetic analysis. Thermochim Acta. 2019;672:14–24.

    CAS  Google Scholar 

  34. Sharma P, Uniyal P. Investigating thermal and kinetic parameters of lithium titanate formation by solid-state method. J Therm Anal Calorim. 2017;51:1081–94.

    CAS  Google Scholar 

  35. Sharma P, Diwan PK, Pandey OP. Impact of environment on the kinetics involved in the solid-state synthesis of bismuth ferrite. Mater Chem Phys. 2019;233:171–9.

    CAS  Google Scholar 

  36. Hu M, Chen Z, Wang S, Guo D, Ma C, Zhou Y, et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method. Energy Convers Manag. 2016;118:1–11.

    CAS  Google Scholar 

  37. Lysenko EN, Surzhikov AP, Nikolaev EV, Vlasov VA. Thermal analysis study of LiFeO2 formation from Li2CO3–Fe2O3 mechanically activated reagents. J Therm Anal Calorim. 2018;134:81–7.

    CAS  Google Scholar 

  38. Lysenko EN, Nikolaev EV, Surzhikov AP, Nikolaeva SA, Plotnikova IV. The influence of reagents ball milling on the lithium ferrite formation. J Therm Anal Calorim. 2019;138:2005–13.

    CAS  Google Scholar 

  39. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  40. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    CAS  Google Scholar 

  41. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2007;6:183–95.

    Google Scholar 

  42. Chen J, Wang Y, Lang X, Ren X, Fan S. Evaluation of agricultural residues pyrolysis under non-isothermal conditions: thermal behaviors, kinetics, and thermodynamics. Bioresour Technol. 2017;241:340–8.

    CAS  PubMed  Google Scholar 

  43. Sharma P, Pandey OP. Non-isothermal oxidation kinetics of nano-laminated Cr2AlC MAX phase. J Alloys Compd. 2019;773:872–82.

    CAS  Google Scholar 

  44. Quan C, Li A, Gao N. Thermogravimetric analysis and kinetic study on large particles of printed circuit board wastes. Waste Manag. 2009;29:2353–60.

    CAS  PubMed  Google Scholar 

  45. Sharma P, Jha PK, Diwan PK, Pandey OP. Impact of CuS on the crystallization kinetics of Na2S–P2S5 glasses. J Non Cryst Solids. 2017;477:31–41.

    CAS  Google Scholar 

  46. Sharma P, Diwan PK. Study of thermal decomposition process and the reaction mechanism of the eucalyptus wood. Wood Sci Technol. 2017;128:875–82.

    CAS  Google Scholar 

  47. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetry data. J Polym Sci Part C Polym Lett. 1966;4:323–8.

    CAS  Google Scholar 

  48. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  49. Ratcliffe C, Ratcliffe B (editors). Propagation of uncertainty an uncertainty budget example, 1st edn. Doubt-Free Uncertainty In Measurement. Switzerland: Springer International Publishing; 2015.

  50. Sharma P, Kaur T, Pandey OP. In-situ single step reduction and silicidation of the MoO3 to form the MoSi2. J Am Ceram Soc. 2019;102:1522–34.

    CAS  Google Scholar 

  51. Sharma P, Pandey OP, Diwan PK. Non-isothermal kinetics of pseudo-components of waste biomass. Fuel. 2019;253:1149–61.

    CAS  Google Scholar 

  52. Dueramae I, Jubsilp C, Takeichi T, Rimdusit S. Thermal degradation mechanism of highly filled nano-SiO2 and polybenzoxazine. J Therm Anal Calorim. 2014;116:435–46.

    CAS  Google Scholar 

  53. Zhu F, Xu Y, Feng Q, Yang Q. Thermal kinetics study and flammability evaluation of polyimide fiber material. J Therm Anal Calorim. 2018;131:2579–87.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Pandey, O.P. Thermal kinetics involved during the solid-state synthesis of Cr2AlC MAX phase. J Therm Anal Calorim 143, 3997–4008 (2021). https://doi.org/10.1007/s10973-020-09390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09390-8

Keywords

Navigation