Skip to main content
Log in

Thermo-hydraulic and entropy generation analysis of recharging microchannel using water-based graphene–silver hybrid nanofluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work numerically investigates thermo-hydraulic and entropy generation characteristics of water-based graphene–silver (Gr–Ag) hybrid nanofluid with temperature-dependent properties in recharging microchannel (RMC). The thermal, hydraulic, and entropy generation characteristics in recharging microchannel are examined for different nanofluid volume concentrations and inlet velocity. The outcome of this study reveals that the utilization of Gr–Ag hybrid nanofluid in recharging microchannel enhances heat transfer performance. With an increase in both nanofluid volume concentration and fluid inlet velocity, substrate maximum temperature and thermal resistance decrease, whereas the uniformity in temperature distribution and average heat transfer coefficient enhanced. Moreover, the use of hybrid nanofluid in recharging microchannel shows higher pressure drop and requires more pumping power. Recharging microchannel (RMC) exhibits better overall performance compared to simple microchannel (SMC) with maximum performance factor value of 1.72. Further, frictional entropy generation increases, and thermal entropy generation decreases with increasing nanofluid volume concentration and inlet velocity. Both total entropy generation and Bejan number decrease with nanofluid volume concentration. Overall, the use of recharging microchannel (RMC) can be beneficial for high heat flux removal applications from both first and second law of thermodynamics perspective. Second, the utilization of water-based Gr–Ag hybrid nanofluid is beneficial when pumping power is not a constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

Be:

Bejan number

C p :

Specific heat (J kg−1K−1)

D h :

Hydraulic diameter (mm)

e :

Percentage error (%)

f avg :

Average friction factor

h z :

Local convective heat transfer coefficient (W m−2K−1)

h avg :

Average convective heat transfer coefficient (W m−2K−1)

H :

Substrate thickness (mm)

H c :

Channel height (mm)

H cp :

Cover plate thickness (mm)

k :

Thermal conductivity (W m−1K−1)

k eff :

Effective thermal conductivity (W m−1K−1)

L :

Substrate length (mm)

L tw :

Transverse wall length (mm)

:

Mass flow rate (kg s−1)

N S :

Entropy generation enhancement number

Nuz :

Local Nusselt number

Nuavg :

Average Nusselt number

p :

Pressure (N m2)

Δp :

Pressure drop (N m2)

PF:

Performance factor

q″:

Applied heat flux at the substrate bottom surface (W m−2)

\(q_{\text{z}}^{\prime \prime }\) :

Local heat flux (W m−2)

R Th :

Thermal resistance (K W−1)

\(S^{\prime\prime\prime}_{\text{G,F}}\) :

Local frictional entropy generation (W m−3K−1)

\(S^{\prime\prime\prime}_{\text{G,T}}\) :

Local thermal entropy generation (W m−3K−1)

\(S^{\prime\prime\prime}_{\text{G}}\) :

Local total entropy generation (W m−3K−1)

S G,F :

Global frictional entropy generation (W K−1)

S G,T :

Global thermal entropy generation (W K−1)

S G :

Global total entropy generation (W K−1)

T :

Temperature (K)

T f :

Fluid temperature (K)

T in :

Fluid inlet temperature (K)

T max :

Maximum substrate temperature (K)

T min :

Minimum substrate temperature (K)

T s :

Solid substrate temperature (K)

T w :

Wall temperature (K)

v :

Fluid velocity at inlet (m s−1)

:

Volume flow rate (m3 s−1)

\(\overrightarrow {V}\) :

Velocity vector (m s−1)

W c :

Channel width (mm)

W :

Substrate width (mm)

z :

Axial distance along the flow direction (mm)

θ :

Cooling uniformity (Km2 W−1)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

ϕ :

Nanofluid volume concentration (%)

Ω :

Pumping power (W)

avg:

Average

bf:

Base fluid

bs:

Bottom surface of substrate

c:

Channel

cp:

Cover plate

f:

Working fluid

Hynf:

Hybrid nanofluid

in:

Inlet

nf:

Nanofluid

p:

Nanoparticle

s:

Solid

tw:

Transverse wall

CFD:

Computational fluid dynamics

FVM:

Finite volume method

GNP:

Graphene nanoplatelets

MCHS:

Microchannel heat sink

PMMA:

Poly methyl methacrylate

RMC:

Recharging microchannel

SMC:

Simple microchannel

References

  1. Karayiannis TG, Mahmoud MM. Flow boiling in microchannels: fundamentals and applications. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2016.08.063.

    Article  Google Scholar 

  2. Kandlikar SG, Garimella S, Li D, Colin S, King MR. Heat transfer and fluid flow in minichannels and microchannels. Waltham: Elsevier; 2005.

    Google Scholar 

  3. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981. https://doi.org/10.1109/EDL.1981.25367.

    Article  Google Scholar 

  4. Peng XF, Peterson GP. Convective heat transfer and flow friction for water flow in microchannel structures. Int J Heat Mass Transf. 1996. https://doi.org/10.1016/0017-9310(95)00327-4.

    Article  Google Scholar 

  5. Lee PS, Garimella SV, Liu D. Investigation of heat transfer in rectangular microchannels. Int J Heat Mass Transf. 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.11.019.

    Article  Google Scholar 

  6. Lee PS, Garimella SV. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios. Int J Heat Mass Transf. 2006. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.011.

    Article  Google Scholar 

  7. Qu W, Mala GM, Li D. Heat transfer for water flow in trapezoidal silicon microchannels. Int J Heat Mass Transf. 2000. https://doi.org/10.1016/S0017-9310(00)00045-4.

    Article  Google Scholar 

  8. Owhaib W, Palm B. Experimental investigation of single-phase convective heat transfer in circular microchannels. Exp Therm Fluid Sci. 2004. https://doi.org/10.1016/S0894-1777(03)00028-1.

    Article  Google Scholar 

  9. Gunnasegaran P, Mohammed HA, Shuaib NH, Saidur R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transf. 2010. https://doi.org/10.1016/j.icheatmasstransfer.2010.06.014.

    Article  Google Scholar 

  10. Salimpour MR, Sharifhasan M, Shirani E. Constructal optimization of microchannel heat sinks with noncircular cross sections. Heat Transf Eng. 2013. https://doi.org/10.1080/01457632.2012.746552.

    Article  Google Scholar 

  11. Steinke ME, Kandlikar SG. Review of single-phase heat transfer enhancement techniques for application in microchannels, minichannels and microdevices. Int J Heat Technol. 2004. https://doi.org/10.18280/ijht220201.

    Article  Google Scholar 

  12. Ghani IA, Sidik NAC, Kamaruzaman N. Hydrothermal performance of microchannel heat sink: the effect of channel design. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.031.

    Article  Google Scholar 

  13. Li Y, Xia G, Jia Y, Ma D, Cai B, Wang J. Effect of geometric configuration on the laminar flow and heat transfer in microchannel heat sinks with cavities and fins. Numer Heat Transf Part A Appl. 2017. https://doi.org/10.1080/10407782.2016.1277940.

    Article  Google Scholar 

  14. Ghani IA, Kamaruzaman N, Sidik NAC. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.046.

    Article  Google Scholar 

  15. Xu JL, Gan YH, Zhang DC, Li XH. Microscale heat transfer enhancement using thermal boundary layer redeveloping concept. Int J Heat Mass Transf. 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.008.

    Article  Google Scholar 

  16. Xu J, Song Y, Zhang W, Zhang H, Gan Y. Numerical simulations of interrupted and conventional microchannel heat sinks. Int J Heat Mass Transf. 2008. https://doi.org/10.1016/j.ijheatmasstransfer.2008.05.003.

    Article  Google Scholar 

  17. Huang X, Yang W, Ming T, Shen W, Yu X. Heat transfer enhancement on a microchannel heat sink with impinging jets and dimples. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.078.

    Article  Google Scholar 

  18. Gan T, Ming T, Fang W, Liu Y, Miao L, Ren K, Ahmadi MH. Heat transfer enhancement of a microchannel heat sink with the combination of impinging jets, dimples, and side outlets. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08754-z.

    Article  Google Scholar 

  19. Kim CB, Leng C, Wang XD, Wang TH, Yan WM. Effects of slot-jet length on the cooling performance of hybrid microchannel/slot-jet module. Int J Heat Mass Transf. 2015. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.108.

    Article  Google Scholar 

  20. Zhang Y, Wang S, Ding P. Effects of channel shape on the cooling performance of hybrid micro-channel and slot-jet module. Int J Heat Mass Transf. 2017. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.092.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Samal SK, Moharana MK. Thermo-hydraulic performance evaluation of a novel design recharging microchannel. Int J Therm Sci. 2019. https://doi.org/10.1016/j.ijthermalsci.2018.09.006.

    Article  Google Scholar 

  22. Hussien AA, Abdullah MZ, Moh’d AAN. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: theory and applications. Appl Energy. 2016. https://doi.org/10.1016/j.apenergy.2015.11.099.

    Article  Google Scholar 

  23. Colangelo G, Favale E, Milanese M, de Risi A, Laforgia D. Cooling of electronic devices: nanofluids contribution. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.08.042.

    Article  Google Scholar 

  24. Chamkha AJ, Molana M, Rahnama A, Ghadami F. On the nanofluids applications in microchannels: a comprehensive review. Powder Technol. 2018. https://doi.org/10.1016/j.powtec.2018.03.044.

    Article  Google Scholar 

  25. Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: a critical review. Energy Convers Manag. 2018. https://doi.org/10.1016/j.enconman.2018.07.047.

    Article  Google Scholar 

  26. Sadeghinezhad E, Mehrali M, Saidur R, Mehrali M, Latibari ST, Akhiani AR, Metselaar HSC. A comprehensive review on graphene nanofluids: recent research, development and applications. Energy Convers Manag. 2016. https://doi.org/10.1016/j.enconman.2016.01.004.

    Article  Google Scholar 

  27. Amiri A, Sadri R, Shanbedi M, Ahmadi G, Chew BT, Kazi SN, Dahari M. Performance dependence of thermosyphon on the functionalization approaches: an experimental study on thermo-physical properties of graphene nanoplatelet-based water nanofluids. Energy Convers Manag. 2015. https://doi.org/10.1016/j.enconman.2014.12.051.

    Article  Google Scholar 

  28. Akhavan-Zanjani H, Saffar-Avval M, Mansourkiaei M, Sharif F, Ahadi M. Experimental investigation of laminar forced convective heat transfer of graphene–water nanofluid inside a circular tube. Int J Therm Sci. 2016. https://doi.org/10.1016/j.ijthermalsci.2015.10.003.

    Article  Google Scholar 

  29. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Alehashem MS, Dahari M, Kazi SN. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers Manag. 2016. https://doi.org/10.1016/j.enconman.2016.02.008.

    Article  Google Scholar 

  30. Khodabandeh E, Rozati SA, Joshaghani M, Akbari OA, Akbari S, Toghraie D. Thermal performance improvement in water nanofluid/GNP–SDBS in novel design of double-layer microchannel heat sink with sinusoidal cavities and rectangular ribs. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7826-2.

    Article  Google Scholar 

  31. Akbari OA, Khodabandeh E, Kahbandeh F, Toghraie D, Khalili M. Numerical investigation of heat transfer of nanofluid flow through a microchannel with heat sinks and sinusoidal cavities by using novel nozzle structure. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08227-3.

    Article  Google Scholar 

  32. Ranjbarzadeh R, Karimipour A, Afrand M, Isfahani AHM, Shirneshan A. Empirical analysis of heat transfer and friction factor of water/graphene oxide nanofluid flow in turbulent regime through an isothermal pipe. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.07.189.

    Article  Google Scholar 

  33. Sadri R, Hosseini M, Kazi SN, Bagheri S, Ahmed SM, Ahmadi G, Zubir N, Sayuti M, Dahari M. Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer. Energy Convers Manag. 2017. https://doi.org/10.1016/j.enconman.2017.07.036.

    Article  Google Scholar 

  34. Esfahani MR, Nunna MR, Languri EM, Nawaz K, Cunningham G. Experimental study on heat transfer and pressure drop of in-house synthesized graphene oxide nanofluids. Heat Transf Eng. 2018. https://doi.org/10.1080/01457632.2018.1497001.

    Article  Google Scholar 

  35. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, Zubir MNM, Alehashem MS, Kazi SN, Dahari M. Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015. https://doi.org/10.1016/j.enconman.2015.05.023.

    Article  Google Scholar 

  36. Bahiraei M, Heshmatian S. Efficacy of a novel liquid block working with a nanofluid containing graphene nanoplatelets decorated with silver nanoparticles compared with conventional CPU coolers. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.08.136.

    Article  Google Scholar 

  37. Bahiraei M, Heshmatian S. Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing graphene–silver nanoparticles. Energy Convers Manag. 2018. https://doi.org/10.1016/j.enconman.2018.05.020.

    Article  Google Scholar 

  38. Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2018.10.003.

    Article  Google Scholar 

  39. Mahian O, Kianifar A, Kleinstreuer C, Moh’d AAN, Pop I, Sahin AZ, Wongwises S. A review of entropy generation in nanofluid flow. Int J Heat Mass Transf. 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.010.

    Article  Google Scholar 

  40. Awad MM. A review of entropy generation in microchannels. Adv Mech Eng. 2015. https://doi.org/10.1177/1687814015590297.

    Article  Google Scholar 

  41. Mehrali M, Sadeghinezhad E, Rosen MA, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC. Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. Int Commun Heat Mass Transf. 2015. https://doi.org/10.1016/j.icheatmasstransfer.2015.05.007.

    Article  Google Scholar 

  42. Ebrahimi A, Rikhtegar F, Sabaghan A, Roohi E. Heat transfer and entropy generation in a microchannel with longitudinal vortex generators using nanofluids. Energy. 2016. https://doi.org/10.1016/j.energy.2016.01.102.

    Article  Google Scholar 

  43. Ahammed N, Asirvatham LG, Wongwises S. Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.070.

    Article  Google Scholar 

  44. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  45. Manay E, Akyürek EF, Sahin B. Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys. 2018. https://doi.org/10.1016/j.rinp.2018.03.013.

    Article  Google Scholar 

  46. Darbari B, Rashidi S, Keshmiri A. Nanofluid heat transfer and entropy generation inside a triangular duct equipped with delta winglet vortex generators. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08382-7.

    Article  Google Scholar 

  47. Al-Rashed AAAA, Shahsavar A, Rasooli O, Moghimi MA, Karimipour A, Tran MD. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled microchannel heat sink. Int Commun Heat Mass Transf. 2019. https://doi.org/10.1016/j.icheatmasstransfer.2019.03.007.

    Article  Google Scholar 

  48. Bejan A. Entropy generation through heat and fluid flow. New York: Willey; 1982.

    Google Scholar 

  49. Guo J, Xu M, Cheng L. Second law analysis of curved rectangular channels. Int J Therm Sci. 2011. https://doi.org/10.1016/j.ijthermalsci.2010.12.011.

    Article  Google Scholar 

  50. Lee J, Mudawar I. Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf. 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.001.

    Article  Google Scholar 

  51. Li J, Kleinstreuer C. Entropy generation analysis for nanofluid flow in microchannels. ASME J Heat Transf. 2010. https://doi.org/10.1115/1.4002395.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar Moharana.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, S.K., Moharana, M.K. Thermo-hydraulic and entropy generation analysis of recharging microchannel using water-based graphene–silver hybrid nanofluid. J Therm Anal Calorim 143, 4131–4148 (2021). https://doi.org/10.1007/s10973-020-09382-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09382-8

Keywords

Navigation