Skip to main content
Log in

Numerical simulation of nanofluid turbulent flow in a double-pipe heat exchanger equipped with circular fins

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the thermal and flow characteristics of a nanofluid were evaluated numerically in a circular finned double-pipe heat exchanger. A 3D CFD model was employed to study the effects of nanofluid properties and fin configuration on the friction coefficient, Nu number and thermal performance. The effects of Al2O3 nanoparticles at the volume concentration of 1–2% were considered for both Newtonian and non-Newtonian turbulent flow in the annulus side with an insulated outer surface and constant heat flux inner tube. A numerical analysis is conducted for different values of Re numbers of 5000–100,000, fin heights (1, 2 and 3 mm) and fin pitches (80, 160 and 320 mm). The results showed that the use of circular fin increases the heat transfer 36% and 30% for Newtonian and non-Newtonian nanofluid, respectively. The Nu number was increased by enhancing Al2O3 volume concentration and Re number. A thermal performance evaluation was carried out to study the conflict between heat transfer and pressure drop. Although the simultaneous use of the fins and nanoparticles improves the thermal behavior of Newtonian fluid but decreases the thermal performance for non-Newtonian fluid due to a penalty in pressure drop. Therefore, in this research adding nanoparticles to non-Newtonian fluid is suggested without any inserts in the annulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

C 2 :

Model constant

\(C_{\text{p}}\) :

Specific heat, J kg−1 K−1

C μ :

Model parameter

D :

Tube diameter, m

D h :

Hydraulic diameter, m

f :

Darcy–Weisbach friction factor

h :

Fin height, m

k :

Turbulent kinetic energy, m2 s−2

K :

Consistency index, kg sn−2 m−1

L :

Pipe length, m

n :

Behavior index

Nu:

Nusselt number

p :

Pressure, Pa

Pc:

Peclet number

Pr:

Prandtl number

q :

Heat flux, W m−2

\(r^{*}\) :

Radios ratio

Re:

Reynolds number

S :

Fin pitch, m

t :

Fin thickness, m

T :

Temperature, K

u :

Velocity component in flow direction, m s−1

uʹ:

Root-mean-square turbulent velocity fluctuation, m s−1

x, y, z :

Cartesian coordinates

CFD:

Computational fluid dynamic

CMC:

Carboxymethyl cellulose

DPHE:

Double-pipe heat exchanger

Δ:

Difference operator

δ ii :

Dirac delta function

ε :

Turbulent dissipation rate, m2 s−3

η :

Thermal performance

\(\eta^{\prime}\) :

Apparent viscosity

θ :

Angular coordinate

λ :

Thermal conductivity, W m−1 K−1

μ :

Dynamic viscosity, kg ms−1

ρ :

Density, kg m−3

\(\sigma_{\uptau}\) :

Turbulent Prandtl number in energy equation

\(\sigma_{\text{k}}\) :

Diffusion Prandtl number for k

\(\sigma_{\upvarepsilon}\) :

Diffusion Prandtl number for ε

ϕ :

Nanoparticles volume concentration

b:

Bulk quantity

bf:

Base fluid

i:

Inner or inlet

i, j, k:

General spatial indices

nf:

Nanofluid

o:

Outer or outlet

S:

Smooth

T:

Turbulent quantity

w:

wall

References

  1. Zhang G. Design charts for circular fins of arbitrary profile subject to radiation and convection with wall resistances. Open Thermodyn J. 2012;6:15–24. https://doi.org/10.2174/1874396X01206010015.

    Article  Google Scholar 

  2. AbdelRazek A, Kazi SN, Alawi OA, Yusoff N, Sean Oon C, Ali H. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08562-5.

    Article  Google Scholar 

  3. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  4. Sharma S. Fabricating an experimental setup to investigate the performance of an automobile car radiator by using aluminum/water nanofluid. J Therm Anal Calorim. 2018;133:1–20. https://doi.org/10.1007/s10973-018-7224-9.

    Article  CAS  Google Scholar 

  5. Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sustain Energy Rev. 2017. https://doi.org/10.1016/j.rser.2017.10.097.

    Article  Google Scholar 

  6. Purohit N, Khangarot B, Gullo P, Purohit K, Dasgupta MS. Assessment of alumina nanofluid as a coolant in double pipe gas cooler for trans-critical CO2 refrigeration cycle. Energy Procedia. 2017;109:219–26. https://doi.org/10.1016/j.egypro.2017.03.048.

    Article  CAS  Google Scholar 

  7. Pordanjani A, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019. https://doi.org/10.1016/j.enconman.2019.111886.

    Article  Google Scholar 

  8. Garg K, Khullar V, Das SK, Tyagi H. Parametric study of the energy efficiency of the HDH desalination unit integrated with nanofluid-based solar collector. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7547-6.

    Article  Google Scholar 

  9. Bahiraei M. Impact of thermophoresis on nanoparticle distribution in nanofluids. Results Phys. 2017;7:136–8. https://doi.org/10.1016/j.rinp.2016.12.012.

    Article  Google Scholar 

  10. Alirezaie A, Hajmohammad MH, Alipour A, Salari M. Do nanofluids affect the future of heat transfer? “A benchmark study on the efficiency of nanofluids”. Energy. 2018. https://doi.org/10.1016/j.energy.2018.05.060.

    Article  Google Scholar 

  11. Sergis A, Hardalupas Y. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res Lett. 2011;6:391. https://doi.org/10.1186/1556-276X-6-391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement: gaps and challenges. J Therm Anal Calorim. 2019;135:437–60. https://doi.org/10.1007/s10973-018-7070-9.

    Article  CAS  Google Scholar 

  13. Han D, He W, Asif F. Experimental study of heat transfer enhancement using nanofluid in double tube heat exchanger. Energy Procedia. 2017;142:2547–53. https://doi.org/10.1016/j.egypro.2017.12.090.

    Article  CAS  Google Scholar 

  14. Zamzamian SA, Nasseri Oskouie S, Doosthoseini A, Joneidi Jafari A, Pazouki M. Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow. Exp Therm Fluid Sci. 2011;35:495–502. https://doi.org/10.1016/j.expthermflusci.2010.11.013.

    Article  CAS  Google Scholar 

  15. Yassin M, Shedid M, Abd El-Hameed H, Basheer A. Heat transfer augmentation for annular flow due to rotation of inner finned pipe. Int J Therm Sci. 2018. https://doi.org/10.1016/j.ijthermalsci.2018.05.033.

    Article  Google Scholar 

  16. El-Maghlany W, Hanafy A, Hassan A, El-Magid MA. Experimental study of Cu–water nanofluid heat transfer and pressure drop in a horizontal double-tube heat exchanger. Exp Therm Fluid Sci. 2016. https://doi.org/10.1016/j.expthermflusci.2016.05.015.

    Article  Google Scholar 

  17. Sonawane S, Khedkar R, Wasewar K. Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. Int Commun Heat Mass Transf. 2013;49:60–8. https://doi.org/10.1016/j.icheatmasstransfer.2013.10.001.

    Article  CAS  Google Scholar 

  18. Maddah H, Aghayari R, Mirzaee M, Ahmadi M, Sadeghzadeh M, Chamkha A. Factorial experimental design for the thermal performance of a double pipe heat exchanger using Al2O3–TiO2 hybrid nanofluid. Int Commun Heat Mass Transf. 2018;97:92–102. https://doi.org/10.1016/j.icheatmasstransfer.2018.07.002.

    Article  CAS  Google Scholar 

  19. Mohammadi M, Abadeh A, Nemati-Farouji R, Passandideh-Fard M. An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08167-y.

    Article  Google Scholar 

  20. Noorbakhsh M, Zaboli M, Mousavi Ajarostaghi S. Numerical evaluation of the effect of using twisted tapes as turbulator with various geometries in both sides of a double-pipe heat exchanger. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08509-w.

    Article  Google Scholar 

  21. Hosseinnejad R, Hosseini M, Farhadi M. Turbulent heat transfer in tubular heat exchangers with twisted tape. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7400-y.

    Article  Google Scholar 

  22. Feyza Akyürek E, Geliş K, Sahin B, Manay E. Experimental analysis for heat transfer of nanofluid with wire coil turbulators in a concentric tube heat exchanger. Results Phys. 2018. https://doi.org/10.1016/j.rinp.2018.02.067.

    Article  Google Scholar 

  23. Ghanbari S, Javaherdeh K. Investigation of applying nanoporous graphene non-Newtonian nanofluid on rheological properties and thermal performance in a turbulent annular flow with perforated baffles. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08389-0.

    Article  Google Scholar 

  24. Mozafarie S, Javaherdeh K. Numerical design and heat transfer analysis of a non-Newtonian fluid flow for annulus with helical fins. Eng Sci Technol Int J. 2019. https://doi.org/10.1016/j.jestch.2019.03.001.

    Article  Google Scholar 

  25. Bahiraei M, Mazaheri N, Rizehvandi A. Application of a hybrid nanofluid containing graphene nanoplatelet–platinum composite powder in a triple-tube heat exchanger equipped with inserted ribs. Appl Therm Eng. 2018. https://doi.org/10.1016/j.applthermaleng.2018.12.072.

    Article  Google Scholar 

  26. Kumar N, Panitapu B, Mulat Addis B, Syam Sundar L, Singh M, Sousa A. Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend. Int Commun Heat Mass Transf. 2017;81:155–63. https://doi.org/10.1016/j.icheatmasstransfer.2016.12.019.

    Article  CAS  Google Scholar 

  27. Omidi M, Farhadi M, Jafari M. Numerical study on the effect of using spiral tube with lobed cross section in double-pipe heat exchangers. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7579-y.

    Article  Google Scholar 

  28. Hashemian M, Jafarmadar S, Sadighi Dizaji H. A comprehensive numerical study on multi-criteria design analyses in a novel form (conical) of double pipe heat exchanger. Appl Therm Eng. 2016. https://doi.org/10.1016/j.applthermaleng.2016.04.057.

    Article  Google Scholar 

  29. Togun H. Turbulent heat transfer to separation nanofluid flow in annular concentric pipe. Int J Therm Sci. 2017;117:14–25. https://doi.org/10.1016/j.ijthermalsci.2017.03.014.

    Article  CAS  Google Scholar 

  30. Siavashi M, Miri Joibary SM. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7829-z.

    Article  Google Scholar 

  31. Mansoury D, Ilami Doshmanziari F, Rezaie S, Mehdi Rashidi M. Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers: an experimental approach. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7286-8.

    Article  Google Scholar 

  32. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental study on the heat transfer and flow properties of γ-Al2O3/water nanofluid in a double-tube heat exchanger. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5868-x.

    Article  Google Scholar 

  33. Akbarzadeh M, Rashidi S, Keshmiri A, Shokri N. The optimum position of porous insert for a double-pipe heat exchanger based on entropy generation and thermal analysis. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08362-x.

    Article  Google Scholar 

  34. Beriache Mh, Che Sidik NA, Noor Afiq Witri Muhammad Yazid M, Mamat R, Najafi G, Kefayati G. A review on why researchers apply external magnetic field on nanofluids. Int Commun Heat Mass Transf. 2016;78:60–7. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.023.

    Article  CAS  Google Scholar 

  35. Shakiba A, Vahedi K. Numerical analysis of magnetic field effects on hydro-thermal behavior of a magnetic nanofluid in a double pipe heat exchanger. J Magn Magn Mater. 2015. https://doi.org/10.1016/j.jmmm.2015.11.039.

    Article  Google Scholar 

  36. Bahiraei M, Hangi M. Investigating the efficacy of magnetic nanofluid as a coolant in double-pipe heat exchanger in the presence of magnetic field. Energy Convers Manag. 2013;76:1125–33. https://doi.org/10.1016/j.enconman.2013.09.008.

    Article  CAS  Google Scholar 

  37. Heyhat M, Kowsary F, Rashidi A, Momenpour MH, Amrollahi A. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci. 2013;44:483–9. https://doi.org/10.1016/j.expthermflusci.2012.08.009.

    Article  CAS  Google Scholar 

  38. Js J, Mahajani S, Mandal J, Vijayan PK, Bhoi R. Experimental CFD estimation of heat transfer in helically coiled heat exchanger. Chem Eng Res Des. 2008;86:221–32. https://doi.org/10.1016/j.cherd.2007.10.021.

    Article  CAS  Google Scholar 

  39. Liu Z, Yue Y, She L, Fan G. Numerical analysis of turbulent flow and heat transfer in internally finned tubes. Front Energy Res. 2019;7:64. https://doi.org/10.3389/fenrg.2019.00064.

    Article  Google Scholar 

  40. Js J, Mahajani S, Mandal J, Iyer K, Vijayan PK. CFD analysis of single-phase flows inside helically coiled tubes. Comput Chem Eng. 2010;34:430–46. https://doi.org/10.1016/j.compchemeng.2009.11.008.

    Article  CAS  Google Scholar 

  41. Aly W. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers. Energy Convers Manag. 2014;79:304–16. https://doi.org/10.1016/j.enconman.2013.12.031.

    Article  CAS  Google Scholar 

  42. Launder B, Spalding DB. Mathematical models of turbulence, vol. 53. London: Academic Press; 1972.

    Google Scholar 

  43. Fluent 6.2 user guide. Lebanon: Lebanon, NH; 2005.

  44. Rios-Iribe E, Cervantes M, Castro Eusiel R, Ponce-Ortega J, González-Llanes M, Reyes Moreno C, et al. Heat transfer analysis of a non-Newtonian fluid flowing through a circular tube with twisted tape inserts. Appl Therm Eng. 2015. https://doi.org/10.1016/j.applthermaleng.2015.03.052.

    Article  Google Scholar 

  45. Fotukian SM, Nasr Esfahany M. Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf. 2010;37:214–9. https://doi.org/10.1016/j.icheatmasstransfer.2009.10.003.

    Article  CAS  Google Scholar 

  46. Hojjat M, Gholamreza Etemad S, Bagheri R, Thibault J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf. 2011;38:144–8. https://doi.org/10.1016/j.icheatmasstransfer.2010.11.019.

    Article  CAS  Google Scholar 

  47. Lin Y, Zheng L, Zhang X. Radiation effects on Marangoni convection flow and heat transfer in pseudo-plastic non-Newtonian nanofluids with variable thermal conductivity. Int J Heat Mass Transf. 2014;77:708–16. https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.028.

    Article  CAS  Google Scholar 

  48. Sheikholeslami M, Gorji-Bandpy M, Domiri Ganji D. Experimental study on turbulent flow and heat transfer in an air to water heat exchanger using perforated circular-ring. Exp Therm Fluid Sci. 2015. https://doi.org/10.1016/j.expthermflusci.2015.09.002.

    Article  Google Scholar 

  49. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, et al. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  Google Scholar 

  50. Bergman TL, DeWitt DP, Incropera F, Lavine AS. Fundamentals of heat and mass transfer. New York: Wiley; 2011.

    Google Scholar 

  51. Sefid M, Izadpanah E. Developing and fully developed non-Newtonian fluid flow and heat transfer through concentric annuli. J Heat Transf. 2013;135:071702. https://doi.org/10.1115/1.4023882.

    Article  Google Scholar 

  52. Manglik RM, Fang P. Thermal processing of viscous non-Newtonian fluids in annular ducts: effects of power-law rheology, duct eccentricity, and thermal boundary conditions. Int J Heat Mass Transf. 2002;45:803–14. https://doi.org/10.1016/S0017-9310(01)00186-7.

    Article  Google Scholar 

  53. Capobianchi M, Irvine TF. Predictions of pressure drop and heat transfer in concentric annular ducts with modified power law fluids. Wärme- und Stoffübertragung. 1992;27:209–15. https://doi.org/10.1007/bf01589918.

    Article  CAS  Google Scholar 

  54. Lundberg RE, McCuen PA, Reynolds WC. Heat transfer in annular passages. Hydrodynamically developed laminar flow with arbitrarily prescribed wall temperatures or heat fluxes. Int J Heat Mass Transf. 1963;6:495–529. https://doi.org/10.1016/0017-9310(63)90124-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kourosh Javaherdeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mozafarie, S.S., Javaherdeh, K. & Ghanbari, O. Numerical simulation of nanofluid turbulent flow in a double-pipe heat exchanger equipped with circular fins. J Therm Anal Calorim 143, 4299–4311 (2021). https://doi.org/10.1007/s10973-020-09364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09364-w

Keywords

Navigation