Thermal, morphostructural and spectrometric characterization of an antibacterial kaolinite-based filter modified with silver for water treatment

Abstract

The aim of this work is to synthesize and characterize a new structured silver–clay dried, calcined or sintered at different temperatures composite by TG–DTA analysis, FTIR spectrometry analysis, XRD and Rietveld refinement, WD-XRF spectrometry, FEG–SEM images and EDS chemical analysis and to evaluate the antibacterial capacity of the new composite by the diffusion disk test against E. coli strains to attend water potability parameters. TG–DTA curves of Bco_dried suggested the presence of kaolinite, muscovite and hydrotalcite by the different events of structural water loss at different atmospheres. The interaction of Ag–clay might have occurred with hydrotalcite as can be inferred by the disappearance of the event at 408.9 °C (N2) and 433.4 °C (air). FTIR spectra showed that the modification occurred because of the changes that can be observed in the band range of (750 ≤ ν ≤ 1350) cm−1 for inner –OH and Si–O bonds. The Bco_dried composition was quantified by XRD and Rietveld refinement, and crystalline phases are quartz, calcite, kaolinite, hydrotalcite, muscovite, and portlandite. After sintering, the material presented the formation of new crystalline phases, due to the loss of structural water. When modified, the sample had no characteristic peaks of hydrotalcite, suggesting an interaction with Ag species. The compositions estimated for all samples by WD-XRF are mostly of Si, Al, Ca, K, Mg, Fe, Ti, and Ag. After modification, Ag increased significantly for Pca4_dried and Pca4_sint. SEM images presented the hexagonal characteristic of layered clay material and showed the interaction with Ag added. The susceptibility test showed that Pca4_dried has an antibacterial capacity against E. coli JM107 strains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Prüss-Ustün A, Bartram J, Clasen T, Colford JM, Cumming O, Curtis V, et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Trop Med Int Health. 2014;19:894–905.

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Bergaya F, Lagaly G. Surface modification of clay minerals. Appl Clay Sci. 2001;19:1–3.

    CAS  Article  Google Scholar 

  3. 3.

    Jiang JQ, Ashekuzzaman SM. Development of novel inorganic adsorbent for water treatment. Curr Opin Chem Eng [Internet]. 2012;1:191–9. https://doi.org/10.1016/j.coche.2012.03.008.

    CAS  Article  Google Scholar 

  4. 4.

    Bailey SE, Olin TJ, Mark Bricka R, Dean Adrian D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999;33:2469–79.

    CAS  Article  Google Scholar 

  5. 5.

    Lagaly G. Introduction: from clay mineral-polymer interactions to clay mineral-polymer nanocomposites. Appl Clay Sci. 1996;11:87–8.

    CAS  Article  Google Scholar 

  6. 6.

    Murray HH. Overview—clay mineral applications. Appl Clay Sci. 1991;5:379–95.

    CAS  Article  Google Scholar 

  7. 7.

    Horváth E, Kristóf J, Frost RL. Vibrational spectroscopy of intercalated kaolinites. Part I. Appl Spectrosc Rev. 2010;45:130–47.

    Article  Google Scholar 

  8. 8.

    Zsirka B, Horváth E, Járvás Z, Dallos A, Makó É, Kristóf J. Structural and energetical characterization of exfoliated kaolinite surfaces. Appl Clay Sci [Internet]. 2016;124–125:54–61. https://doi.org/10.1016/j.clay.2016.01.035.

    CAS  Article  Google Scholar 

  9. 9.

    Bergaya F, Lagaly G. Chapter 1 general introduction: clays, clay minerals, and clay science. Dev Clay Sci. 2006;1:1–18.

    Google Scholar 

  10. 10.

    Grim RE. Applied clay mineralogy. New York: McGraw-Hill; 1962.

    Google Scholar 

  11. 11.

    Albers APF, Melchiades FG, Machado R, Baldo JB, Boschi AO. Um método simples de caracterização de argilominerais por difração de raios X. Cerâmica. 2002;48:34–7.

    CAS  Article  Google Scholar 

  12. 12.

    Menezes RR, Souto PM, Santana LNL, Neves GA, Kiminami RHGA, Ferreira HC. Argilas bentoníticas de Cubati, Paraíba, Brasil: Caracterização física-mineralógica. Cerâmica. 2009;55:163–9.

    CAS  Article  Google Scholar 

  13. 13.

    Tombacz E, Szekeres M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl Clay Sci. 2004;27:75–94.

    CAS  Article  Google Scholar 

  14. 14.

    Fernandes MVS, Silva LRDda. Síntese e caracterização de vermiculita mesoporosa obtida por modificação com sais complexos de alumínio e lantânio. Cerâmica [Internet]. 2014;60:205–10.

    CAS  Article  Google Scholar 

  15. 15.

    Franzin BT, Lupi CP, Martins LA, Guizellini FC, dos Santos CCM, Pastre IA, et al. Thermal and electrochemical studies of Fe(III) organophilic montmorillonite. J Therm Anal Calorim. 2018;131:713–23.

    CAS  Article  Google Scholar 

  16. 16.

    Lupi CP, Franzin BT, Pereira PR, Damaceno AJ, Dadamos TRD, dos Santos CCM, et al. Thermal and electrochemical studies of Cu(II) 8-hydroxyquinoline organophilic montmorillonite. J Therm Anal Calorim. 2018;131:799–810.

    CAS  Article  Google Scholar 

  17. 17.

    Pastre IA, Oliveria ID, Moitinho ABS, de Souza GR, Ionashiro EY, Fertonani FL. Thermal behaviour of intercalated 8-hydroxyquinoline (oxine) in montmorillonite clay. J Therm Anal Calorim. 2004;75:661–9.

    CAS  Article  Google Scholar 

  18. 18.

    Farhanian S, Hatami M. Thermal and morphological aspects of silver decorated halloysite reinforced polypropylene nanocomposites. J Therm Anal Calorim. 2017;130:2069–78.

    CAS  Article  Google Scholar 

  19. 19.

    Hashemian S, Reza Shahedi M. Novel Ag/kaolin nanocomposite as adsorbent for removal of acid cyanine 5R from aqueous solution. J Chem. 2013;2013:1–7.

    Google Scholar 

  20. 20.

    Sadasivam S, Rao SM. Characterization of silver–kaolinite (AgK): an adsorbent for long-lived 129I species. SpringerPlus. 2016;5:142. https://doi.org/10.1186/s40064-016-1855-8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Valaskova M, Hundakova M, Mamulova Kutlakova K, Seidlerova J, Capkova P, Pazdziora E, et al. Preparation and characterization of antibacterial silver/vermiculites and silver/montmorillonites. Geochim Cosmochim Acta. 2010;74:6287–300.

    CAS  Article  Google Scholar 

  22. 22.

    Karel FB, Koparal AS, Kaynak E. Development of silver ion doped antibacterial clays and investigation of their antibacterial activity. Adv Mater Sci Eng. 2015. https://doi.org/10.1155/2015/409078.

    Article  Google Scholar 

  23. 23.

    Magana SM, Quintana P, Aguilar DH, Toledo JA, Angeles-Chavez C, Cortes MA, et al. Antibacterial activity of montmorillonites modified with silver. J Mol Catal A Chem. 2008;281:192–9.

    CAS  Article  Google Scholar 

  24. 24.

    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med. 2007;3:95–101.

    CAS  Article  Google Scholar 

  25. 25.

    Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27:76–83.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Li WR, Xie XB, Shi QS, Zeng HY, Ou-Yang YS, Chen YB. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol. 2010;85:1115–22.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Ajayan PM. Bulk Metal and Ceramics Nanocomposites. In: Ajayan PM, Schadler LS, Braun PV, editors. Nanocomposites Science and Technology. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2003. pp. 1–75.

    Google Scholar 

  28. 28.

    Liu J, Lee JB, Kim DH, Kim Y. Preparation of high concentration of silver colloidal nanoparticles in layered laponite sol. Coll Surf A Physicochem Eng Asp. 2007;302:276–9.

    CAS  Article  Google Scholar 

  29. 29.

    Zhang X, Yang CW, Yu HQ, Sheng GP. Light-induced reduction of silver ions to silver nanoparticles in aquatic environments by microbial extracellular polymeric substances (EPS). Water Res. 2016;106:242–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Babos DV, Costa VC, Speranca MA, Pereira ER. Direct determination of calcium and phosphorus in mineral supplements for cattle by wavelength dispersive X-ray fluorescence (WD-XRF). Microchem J. 2018;137:272–6.

    CAS  Article  Google Scholar 

  31. 31.

    Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests. 12th edn. Pennsylvania: CLSI; 2015.

  32. 32.

    American Society for Testing and Materials (ASTM). ASTM C114-18: Standard Test Methods for Chemical Analysis of Hydraulic Cement. Pennsylvania: ASTM International. 2018. https://doi.org/10.1520/C0114-18.

  33. 33.

    Vagvolgyi V, Palmer SJ, Kristof J, Frost RL, Horvath E. Mechanism for hydrotalcite decomposition: a controlled rate thermal analysis study. J Coll Interface Sci. 2008;318:302–8.

    Article  CAS  Google Scholar 

  34. 34.

    Gaines GL, Vedder W. Dehydroxylation of muscovite. Nature [Internet]. 1964;201:495. https://doi.org/10.1038/201495a0.

    CAS  Article  Google Scholar 

  35. 35.

    Bayliss P, Warne SSJ. Differential thermal analysis of siderite–kaolinite mixtures. Am Mineral. 1972;57:960–6.

    CAS  Google Scholar 

  36. 36.

    Rowland RA. Differential thermal analysis of clays and carbonates. Clays Clay Miner [Internet]. 1952;1:151–63. https://doi.org/10.1346/CCMN.1952.0010118.

    Article  Google Scholar 

  37. 37.

    Zhang J, Xu YF, Qian GG, Xu ZP, Chen C, Liu Q. Reinvestigation of dehydration and dehydroxylation of hydrotalcite-like compounds through combined TG–DTA–MS analyses. J Phys Chem C. 2010;114:10768–74.

    CAS  Article  Google Scholar 

  38. 38.

    Chiu Y, Rambabu U, Hsu MH, Shieh HPD, Chen CY, Lin HH. Fabrication and nonlinear optical properties of nanoparticle silver oxide films. J Appl Phys. 2003;94:1996–2001.

    Article  CAS  Google Scholar 

  39. 39.

    Paulik F, Paulik J, Arnold M. Examination of the decomposition of agno3 by means of simultaneous ega and tg method under conventional and quasi isothermal circumstances. Thermochim Acta. 1985;92:787–90.

    CAS  Article  Google Scholar 

  40. 40.

    Waterhouse GIN, Bowmaker GA, Metson JB. The thermal decomposition of silver (I, III) oxide: a combined XRD, FT-IR and Raman spectroscopic study. Phys Chem Chem Phys. 2001;3:3838–45.

    CAS  Article  Google Scholar 

  41. 41.

    Otto K, Acik IO, Krunks M, Tonsuaadu K, Mere A. Thermal decomposition study of HAuCl4 center dot 3H(2)O and AgNO3 as precursors for plasmonic metal nanoparticles. J Therm Anal Calorim. 2014;118:1065–72.

    CAS  Article  Google Scholar 

  42. 42.

    Negishi A, Ozawa T. The effect of grinding on DTA curves of silver nitrate. Thermochim Acta [Internet]. 1971;2:89–91.

    CAS  Article  Google Scholar 

  43. 43.

    Charlot G. Les réactions chimiques en solution: l’analyse qualitative minérale. 6th ed. Paris: Masson et Cie; 1969.

    Google Scholar 

  44. 44.

    Obadiah A, Kannan R, Ravichandran P, Ramasubbu A, Kumar SV. Nano hydrotalcite as a novel catalyst for biodiesel conversion. Dig J Nanomater Biostruct. 2012;7:321–7.

    Google Scholar 

  45. 45.

    Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds. Hoboken: Wiley; 1977.

    Google Scholar 

  46. 46.

    Farmer VC, Russell JD. The infra-red spectra of layer silicates. Spectrochim Acta. 1964;20:1149–73.

    CAS  Article  Google Scholar 

  47. 47.

    Karakassides MA, Gournis D, Petridis D. An infrared reflectance study of Si–O vibrations in thermally treated alkali-saturated montmorillonites. Clay Miner. 1999;34:429–38.

    CAS  Article  Google Scholar 

  48. 48.

    Ritz M, Vaculikova L, Plevova E, Matysek D, Malis J. Determination of chlorite, muscovite, albite and quartz in claystones and clay shales by infrared spectroscopy and partial least-squares regression. Acta Geodyn Geomater. 2012;9:511–20.

    Google Scholar 

  49. 49.

    Horgnies M, Chen JJ, Bouillon C. Overview about the use of Fourier transform infrared spectroscopy to study cementitious materials. WIT Trans Eng Sci. 2013;77:251–62.

    CAS  Article  Google Scholar 

  50. 50.

    Vieira CMF, Sales HF, Monteiro SN. Efeito da adição de argila fundente ilítica em cerâmica vermelha de argilas cauliníticas. Cerâmica. 2004;50:239–46.

    CAS  Article  Google Scholar 

  51. 51.

    Abello S, Medina F, Tichit D, Perez-Ramirez J, Groen JC, Sueiras JE, et al. Aldol condensations over reconstructed Mg–Al hydrotalcites: structure-activity relationships related to the rehydration method. Chem Eur J. 2005;11:728–39.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Debecker DP, Gaigneaux EM, Busca G. Exploring, tuning, and exploiting the basicity of hydrotalcites for applications in heterogeneous catalysis. Chem Eur J. 2009;15:3920–35.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Baes CF, Mesmer RE. The hydrolysis of cations. New York: Wiley; 1976.

    Google Scholar 

  54. 54.

    Miyata S. Anion-exchange properties of hydrotalcite-like compounds. Clays Clay Min. 1983;31:305–11.

    CAS  Article  Google Scholar 

  55. 55.

    Huang HT, Yang Y. Preparation of silver nanoparticles in inorganic clay suspensions. Compos Sci Technol. 2008;68:2948–53.

    CAS  Article  Google Scholar 

  56. 56.

    Chakraborty AK. Formation of silicon–aluminum spinel. J Am Ceram Soc [Internet]. 1979;62:120–4.

    CAS  Article  Google Scholar 

  57. 57.

    Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed. 2013;52:1636–53.

    CAS  Article  Google Scholar 

  58. 58.

    Thurman RB, Gerba CP, Bitton G. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control [Internet]. 1989;18:295–315.

    Article  Google Scholar 

  59. 59.

    Patakfalvi R, Oszko A, Dekany I. Synthesis and characterization of silver nanoparticle/kaolinite composites. Coll Surf A Physicochem Eng Asp. 2003;220:45–54.

    CAS  Article  Google Scholar 

  60. 60.

    Benli B, Yalm C. The influence of silver and copper ions on the antibacterial activity and local electrical properties of single sepiolite fiber: a conductive atomic force microscopy (C-AFM) study. Appl Clay Sci. 2017;146:449–56.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Cerâmica Stéfani and SPR Consultoria Metrológica. We would like to thank the LabCACC (São Paulo State University, Araraquara) for XRD facilities, GAIA (São Carlos Federal University, São Carlos) for WD-XRF facilities, Laboratório de Sucroquímica e Química Ambiental (LSQA) (São Paulo State University, São José do Rio Preto-SP) for ATR-FTIR facilities and the LMA-IQ for FEG–SEM facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando Luis Fertonani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guizellini, F.C., Franzin, B.T., da Silva, M.A. et al. Thermal, morphostructural and spectrometric characterization of an antibacterial kaolinite-based filter modified with silver for water treatment. J Therm Anal Calorim 143, 47–60 (2021). https://doi.org/10.1007/s10973-020-09267-w

Download citation

Keywords

  • TG–DTA
  • XRD
  • FTIR
  • WD-XRF
  • FEG–SEM images
  • Antibacterial clay filter for water treatment