Skip to main content
Log in

Influence of sodium pretreatments on the preparation of Ag-doped polycationic bentonite for antibacterial purposes

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Sodium bentonites have excellent cation exchange capacity (CEC) giving them great power of silver adsorption, which enables their use as precursors of antimicrobial materials. Countries like Brazil, however, do not have natural sources of sodium bentonite, only calcium or polycationic clays that do not show the same adsorption and ion exchange potential. In this study, the adsorption of silver in a polycationic bentonite from Quatro Barras, Brazil, previously subjected to a sodium treatment is evaluated. Samples were first modified with \(\hbox {Na}_{2}\hbox {CO}_{3}\) or NaOH and then, subjected to silver impregnation in a batch system under controlled ambient conditions. Antibacterial properties of silver-exchanged clays were evaluated by the disk susceptibility and the minimum inhibitory concentration tests on Escherichia coli and Staphylococcus aureus bacteria. Results show that the sodium treatment with \(\hbox {Na}_{2}\hbox {CO}_{3}\) allowed higher concentrations within a shorter time, increasing the pH without compromising the montmorillonite structure, which resulted on greater CEC and swelling values. Such better performance of the samples previously treated with sodium carbonate also caused an enhanced silver adsorption, resulting on a material of greater antibacterial potential. Experimental adsorption data fitted well to Freundlich isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Magaña S M, Quintana P, Aguilar D H, Toledo J A, Ángeles-Chávez C, Cortés M A et al 2008 J. Mol. Catal. A: Chem. 281 192

    Article  Google Scholar 

  2. Connelly M C, Reddy G S, Nadagouda M N and Sekhar J A 2017 Clean Technol. Environ. Policy 19 845

    Article  CAS  Google Scholar 

  3. Jung W K, Koo H C, Kim K W, Shin S, Kim S H and Park Y H 2008 Appl. Environ. Microbiol. 74 2171

    Article  CAS  Google Scholar 

  4. Rai M, Yadav A and Gade A 2009 Biotechnol. Adv. 27 76

    Article  CAS  Google Scholar 

  5. Heidarpour F, Wan Ab Karim Ghani W A, Fakhru’l-Razi A, Sobri S, Heydarpour V, Zargar M et al 2011 Clean Technol. Environ. Policy 13 499

    Article  CAS  Google Scholar 

  6. Bedolla-Cázares F, Hernández-Marcelo P E, Gómez-Hurtado M A, Rodríguez-García G, del Río R E, López-Castro Y et al 2017 Clean Technol. Environ. Policy 19 897

    Article  Google Scholar 

  7. Wakshlak R B-K, Pedahzur R and Avnir D 2015 Sci. Rep. 5 9555

    Article  CAS  Google Scholar 

  8. Monash P, Niwas R and Pugazhenthi G 2011 Clean Technol. Environ. Policy 13 141

    Article  CAS  Google Scholar 

  9. Ahmed A K A and Marhaba T F 2017 Clean Technol. Environ. Policy 19 349

    Article  CAS  Google Scholar 

  10. Murray H 2002 Min. Miner. Sustain. Dev. 64 1

    Google Scholar 

  11. Cantuaria M L, de Almeida Neto A F, Nascimento E S and Vieira M G A 2016 J. Clean. Prod. 112 1112

    Article  CAS  Google Scholar 

  12. Freitas E D, Carmo A C R, Almeida Neto A F and Vieira M G A 2017 Appl. Clay Sci. 137 69

    Article  CAS  Google Scholar 

  13. Jintakosol T and Nitayaphat W 2016 Mater. Res. 19 1114

    Article  CAS  Google Scholar 

  14. Özdemir G, Limoncu M H and Yapar S 2010 Appl. Clay Sci. 48 319

    Article  Google Scholar 

  15. Praus P, Turicová M and Valásková M 2008 J. Braz. Chem. Soc. 19 549

    Article  CAS  Google Scholar 

  16. Medeiros K A 2016 in T M Lima and C A R Neves (eds) Sumário Mineral Brasileiro Departamento Nacional de Produção Mineral (DNPM), Brasília

  17. ASTM 2014 Standard test method for methylene blue index of clay (Pennsylvania: ASTM International)

  18. Rosário J A, Miguel R F, Rosário D A, Kuhnen N C and Riella H G 2019 Cerâmica 65 185

    Article  Google Scholar 

  19. Mosser-Ruck R and Cathelineau M 2004 Appl. Clay Sci. 26 259

    Article  CAS  Google Scholar 

  20. Alther G R 1986 Appl. Clay Sci. 1 273

    Article  CAS  Google Scholar 

  21. Ijagbemi C O, Baek M-H and Kim D-S 2009 J. Hazard. Mater. 166 538

    Article  CAS  Google Scholar 

  22. Rozalen M, Huertas F J and Brady P V 2009 Geochim. Cosmochim. Acta 73 3752

    Article  CAS  Google Scholar 

  23. Savage D, Bateman K, Hill P, Hughes C, Milodowski A, Pearce J et al 1992 Appl. Clay Sci. 7 33

    Article  CAS  Google Scholar 

  24. Hayashi H and Yamada M 1990 Clays Clay Miner. 38 308

    Article  CAS  Google Scholar 

  25. Giraldo L F, Camilo P and Kyu T 2016 Curr. Opin. Chem. Eng. 11 7

    Article  Google Scholar 

  26. Ebadi Amooghin A, Omidkhah M, Sanaeepur H and Kargari A 2016 J. Energy Chem. 25 450

    Article  Google Scholar 

  27. Dorjnamjin D, Ariunaa M and Shim Y K 2008 Int. J. Mol. Sci. 9 807

    Article  CAS  Google Scholar 

  28. Ahmad M B, Shameli K, Darroudi M, Yunus W M Z W, Ibrahim N A, Hamid A A et al 2009 Res. J. Biol. Sci. 4 1032

    Google Scholar 

  29. Freundlich H M F 1906 J. Phys. Chem. 57 385

    CAS  Google Scholar 

  30. Temkin M I 1941 Russ. J. Phys. Chem. A 15 296

    CAS  Google Scholar 

  31. Dubinin M M and Radushkevich L V 1947 Proc. Acad. Sci. 55 331

    Google Scholar 

  32. Montgomery D 2001 Design and analysis of experiments (New York: John Wiley & Sons Inc.)

    Google Scholar 

  33. Koyuncu H, Yıldız N, Salgın U, Köroğlu F and Çalımlı A 2011 J. Hazard. Mater. 185 1332

    Article  CAS  Google Scholar 

  34. Senturk H B, Ozdes D, Gundogdu A, Duran C and Soylak M 2009 J. Hazard. Mater. 172 353

    Article  CAS  Google Scholar 

  35. Bhardwaj D, Sharma M, Sharma P and Tomar R 2012 J. Hazard. Mater. 227–228 292

    Article  Google Scholar 

  36. Malachová K, Praus P, Pavlíčková Z and Turicová M 2009 Appl. Clay Sci. 43 364

    Article  Google Scholar 

  37. Nabikhan A, Kandasamy K, Raj A and Alikunhi N M 2010 Colloids Surf. B: Biointerfaces 79 488

    Article  CAS  Google Scholar 

  38. Marambio-Jones C and Hoek E M V 2010 J. Nanopart. Res. 12 1531

    Article  CAS  Google Scholar 

  39. Baran M 2019 Biol. Chem. Res. 6 96

    Google Scholar 

  40. Kelbis A, Lima O, Vasconcelos A, Jeosafá J, Júnior V, Katrine S et al 2019 J. Nanosci. Nanotechnol.  15 179

    Google Scholar 

Download references

Acknowledgements

We would like to thank CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnológico) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A P Cechinel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 4283 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosário, J.A., Cechinel, M.A.P., Oliveira, C.M. et al. Influence of sodium pretreatments on the preparation of Ag-doped polycationic bentonite for antibacterial purposes. Bull Mater Sci 43, 106 (2020). https://doi.org/10.1007/s12034-020-02085-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02085-8

Keywords

Navigation