Skip to main content
Log in

Calorimetric study of spinodal decomposition in β-Cu–Al–Mn

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

We report data obtained from the spinodal decomposition in samples of two compositions of intermetallic Cu–Al–Mn shape memory alloys. Detailed experimental information has been collected by means of differential scanning calorimetry (DSC). Spinodal decomposition was induced by isothermal treatments at different temperatures within the miscibility gap. To determine the precipitation kinetics, after each isothermal treatment particle dissolution curves were obtained by DSC. From the dissolution curves, various aspects of the precipitation process were determined, such as particles dissolution enthalpy; initial precipitate volume fraction evolution; non-isothermal dissolution characteristics; dissolution activation energy and particle distribution information. Regardless of the composition, the determined activation energy was 77 kJ mol−1. Diffusion of Mn atoms seems to be the fundamental factor that controls the studied processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloys Compd. 1998;266:191–200.

    Article  CAS  Google Scholar 

  2. Kainuma R, Takahashi S, Ishida K. Thermoelastic martensite and shape memory effect in ductile Cu–Al–Mn alloys. Metall Mater Trans A. 1996;27:2187–95.

    Article  Google Scholar 

  3. Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K. Effects of ageing on bainitic and thermally induced martensitic transformations in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater Acta Mater Inc. 2009;57:5748–58.

    CAS  Google Scholar 

  4. Brazolin GF, Silva CCS, Silva LS, Silva RAG. Phase transformations in an annealed Cu–9Al–10Mn–3Gd alloy. J Therm Anal Calorim. 2018;134(3):1405–12.

    Article  CAS  Google Scholar 

  5. Souza JS, Modesto DA, Silva RAG. Thermal behavior of the as-cast Cu–11Al–10Mn alloy with Sn and Gd additions. J Therm Anal Calorim. 2019;7:1–8.

    Google Scholar 

  6. Obradó E, Frontera C, Mañosa L, Planes A. Order-disorder transitions of Cu–Al–Mn shape-memory alloys. Phys Rev B. 1998;58:14245–55.

    Article  Google Scholar 

  7. Prado MO, Decorte PM, Lovey FC. Martensitic transformation in Cu–Mn–Al alloys. Scr Metall Mater Mater. 1995;33:877–83.

    Article  CAS  Google Scholar 

  8. Bouchard M, Thomas G. Phase transitions and modulated structures in ordered (Cu–Mn)3Al alloys. Acta Metall. 1975;23:1485–500.

    Article  CAS  Google Scholar 

  9. Marcos J, Mañosa L, Planes A, Romero R, Castro ML. Kinetics of the phase separation in Cu–Al–Mn alloys and the influence on martensitic transformations. Philos Mag. 2004;84:45–68.

    Article  CAS  Google Scholar 

  10. Sato K, Stobbs WM. Quantification of the spinodal wave in Cu2.5Mn0.5Al by dark-field image analysis. Philos Mag A Phys Condens Matter Struct Defects Mech Prop. 1994;69:349–77.

    CAS  Google Scholar 

  11. Cuniberti A, Montecinos S, Lovey FC. Effect of γ2-phase precipitates on the martensitic transformation of a β-CuAlBe shape memory alloy. Intermetallics. 2009;17:435–40.

    Article  CAS  Google Scholar 

  12. Velazquez D, Romero R. Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy. J Therm Anal Calorim. 2017;130:2007–13.

    Article  CAS  Google Scholar 

  13. Wu Y, Wang J, Jiang C, Xu H. Effect of coherent nanoprecipitates on martensitic transformation in Tb-doped NiMnGa melt-spun ribbons. Intermetallics. 2018;97:42–51.

    Article  CAS  Google Scholar 

  14. Titenko A, Demchenko L. Effect of annealing in magnetic field on ferromagnetic nanoparticle formation in Cu–Al–Mn alloy with induced martensite transformation. Nanoscale Res Lett. 2016;11:237.

    Article  Google Scholar 

  15. Massalski T, Misutani U. Electronic structure of Hume Rothery phases. Prog Mater Sci. 1978;22:151–262.

    Article  CAS  Google Scholar 

  16. Obradó E, Mañosa L, Planes A, Romero R, Somoza A. Quenching effects in Cu–Al–Mn shape memory alloy. Mater Sci Eng A. 1999;275:586–9.

    Article  Google Scholar 

  17. Romero R, Somoza A, Manosa L, Planes A. Vacancies and the martensitic transition in Cu-based shape-memory alloys. A comparative study. J Phys IV Fr. 2003;112:471–4.

    Article  CAS  Google Scholar 

  18. Lohan NM, Pricop B, Burlacu L, Bujoreanu L-G. Using DSC for the detection of diffusion-controlled phenomena in Cu-based shape memory alloys. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5926-4.

    Article  Google Scholar 

  19. Pishchur DP, Drebushchak VA. Recommendations on DSC calibration. J Therm Anal Calorim. 2016;124:951–8.

    Article  CAS  Google Scholar 

  20. Sheibani S, Heshmati-Manesh S, Ataie A, Caballero A, Criado JM. Spinodal decomposition and precipitation in Cu–Cr nanocomposite. J Alloys Compd. 2014;587:670–6.

    Article  CAS  Google Scholar 

  21. Diánez MJ, Donoso E, Sayagués MJ, Perejón A, Sánchez-Jiménez PE, Pérez-Maqueda LA, et al. The calorimetric analysis as a tool for studying the aging hardening mechanism of a Cu–10wt%Ni–5.5wt%Sn alloy. J Alloys Compd. 2016;688:288–94.

    Article  Google Scholar 

  22. Radnóczi G, Bokányi E, Erdélyi Z, Misják F. Size dependent spinodal decomposition in Cu–Ag nanoparticles. Acta Mater. 2017;123:82–9.

    Article  Google Scholar 

  23. Kissinger HE. Reaction Kinetics in Differential Thermal Analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  24. Akahira T, Sunose TT. Method of determining activation deteri- oration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  25. Svoboda R, Málek J. Is the original Kissinger equation obsolete today? J Therm Anal Calorim. 2014;117:3–7.

    Article  Google Scholar 

  26. Stipcich M, Romero R. β-Phase thermal degradation in Zr-added Cu–Zn–Al shape memory alloy: a DSC study. J Therm Anal Calorim. 2017;129:201–7.

    Article  CAS  Google Scholar 

  27. Zhou ZN, Yang L, Li RC, Li J, Hu QD, Li JG. Martensitic transformations and kinetics in Ni–Mn–In–Mg shape memory alloys. Intermetallics. 2018;92:49–54.

    Article  CAS  Google Scholar 

  28. DeIasi R, Adler PN. Calorimetric studies of 7000 series aluminum alloys: I. Matrix precipitate characterization of 7075. Metall Trans A. 1977;8:1177–83.

    Article  Google Scholar 

  29. Chen SP, Vossenberg MS, Vermolen FJ, Van De Langkruis J. Dissolution of β particles in an Al–Mg–Si alloy during DSC runs. Mater Sci Eng A. 1999;272:250–6.

    Article  Google Scholar 

  30. Fraser RDB, Suzuki E. Resolution of overlapping absorption bands by least squares procedures. Anal Chem. 1966;38:1770–3.

    Article  CAS  Google Scholar 

  31. Fraser RDB, Suzuki E. Resolution of overapping bands: functions for simulating band shapes. Anal Chem. 1969;41:37–9.

    Article  CAS  Google Scholar 

  32. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  33. Santos CMA, Adorno AT, Oda NY, Sales BO, Silva LS, Silva RAG. Phase transformations and aging of the Cu72.9Al15.0Mn10.5Ag1.6 alloy. J Alloys Compd. 2016;685:587–92.

    Article  CAS  Google Scholar 

  34. Adorno AT, Carvalho TM, Magdalena AG, Dos Santos CMA, Silva RAG. Bainitic precipitation in the Cu–9wt%Al–4wt%Mn–5wt%Ag alloy. J Alloys Compd. 2014;615:S153–5.

    Article  CAS  Google Scholar 

  35. Liu J, Huang H, Xie J. Effects of aging treatment on the microstructure and superelasticity of columnar-grained Cu71Al18Mn11 shape memory alloy. Int J Miner Metall Mater. 2016;23:1157–66.

    Article  CAS  Google Scholar 

  36. Recarte V, Hurtado I, Herreros J, Nó ML, San Juan J. Precipitation of the stable phases in Cu–Al–Ni shape memory alloys. Scr Mater. 1996;34:255–60.

    Article  CAS  Google Scholar 

  37. Sepulveda A, Muñoz R, Lovey FC, Auguet C, Isalgue A, Torra V. Metastable effects on martensitic transtformation in SMA part II. The grain growth effects in Cu–Al–Be alloy. J Therm Anal. 2007;89:101–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the financial support of the CONICET, ANPCYT, and SECAT-UNCPBA, Argentina. The technical assistance of O. Toscano and E. Portalez in the experimental work is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Velazquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velazquez, D., Romero, R. Calorimetric study of spinodal decomposition in β-Cu–Al–Mn. J Therm Anal Calorim 143, 19–25 (2021). https://doi.org/10.1007/s10973-019-09234-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09234-0

Keywords

Navigation