Skip to main content
Log in

Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Isothermal treatments at 413 K were performed in Cu–Al–Mn shape memory alloy samples, to study their effects on the martensitic transformation. This procedure, within the miscibility gap, produces spinodal decomposition. After each aging thermal treatment, martensitic transformation was monitored using Differential Scanning Calorimetry (DSC). Spinodal decomposition significantly changes the characteristics of the martensitic transition, reducing the transformed volume and modifying the critical temperatures. Furthermore, transformation hysteresis loop narrows as the volume fraction of the spinodal precipitates increases. Effects of thermal cycling through the martensitic transformation were studied in aged alloy samples. It was found that cycling produces critical temperatures changes, an increase in the transformed volume fraction, and a wider hysteresis loop. The observed results were discussed considering the interaction between spinodal precipitates and martensitic plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahlers M. Martensite and equilibrium phases in Cu-Zn and Cu-Zn-Al alloys. Prog Mater Sci. 1986;30:135–86.

    Article  CAS  Google Scholar 

  2. Ortín J, Delaey L. Hysteresis in shape-memory alloys. Int J Non Linear Mech. 2002;37:1275–81.

    Article  Google Scholar 

  3. Mallik US, Sampath V. Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater Sci Eng, A. 2008;481–482:680–3.

    Article  Google Scholar 

  4. Prado MO, Decorte PM, Lovey FC. Martensitic transformation in Cu-Mn-Al Alloys. Scr Metall Mater Mater. 1995;33:877–83.

    Article  CAS  Google Scholar 

  5. Obradó E, Mañosa L, Planes A. Stability of the bcc phase of Cu-Al-Mn shape-memory alloys. Phys Rev B. 1997;56:20–3.

    Article  Google Scholar 

  6. Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K. Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloys Compd. 1998;266:191–200.

    Article  CAS  Google Scholar 

  7. Bouchard M, Livak RJ, Thomas G. Interphase interfaces in spinodal alloys. Surf Sci. 1972;31:275–95.

    Article  CAS  Google Scholar 

  8. Bouchard M, Thomas G. Phase Transitions and Modulated Structures in Ordered (Cu-Mn)3Al Alloys. Acta Metall. 1975;23:1485–500.

    Article  CAS  Google Scholar 

  9. Marcos J, Mañosa L, Planes A, Romero R, Castro ML. Kinetics of the phase separation in Cu–Al–Mn alloys and the influence on martensitic transformations. Philos Mag. 2004;84:45–68.

    Article  CAS  Google Scholar 

  10. Kokorin VV, Kozlova LE, Titenko AN. Temperature hysteresis of martensite transformation in aging Cu-Mn-Al alloy. Scr Mater. 2002;47:499–502.

    Article  CAS  Google Scholar 

  11. Aslani H, Cabrera C, Rahnama M. Potential of Cu-Al-Mn alloys bars for seismic applications. Earthq Eng Struct Dyn. 2012;41:1549–68.

    Article  Google Scholar 

  12. O’Brien B, Bruzzi M. Shape Memory Alloys for use in medicine. Compr. Biomater. Vol. 1. Elsevier Ltd.; 2011.

  13. Oliveira JP, Panton B, Zeng Z, Omori T, Zhou Y, Miranda RM, et al. Laser welded superelastic Cu-Al-Mn shape memory alloy wires. Mater Des. 2016;90:122–8.

    Article  CAS  Google Scholar 

  14. Pishchur DP, Drebushchak VA. Recommendations on DSC calibration. J Therm Anal Calorim. 2016;124:951–8.

    Article  CAS  Google Scholar 

  15. Kato H, Sasaki K. Avoiding error of determining the martensite finish temperature due to thermal inertia in differential scanning calorimetry : model and experiment of Ni–Ti and Cu–Al–Ni shape memory alloys. J Mater Sci. 2012;47:1399–410.

    Article  CAS  Google Scholar 

  16. Pelegrina JL, Torra V. Comment on “Effects of heat-flux features on the differential scanning calorimetry curve of a thermoelastic martensitic transformation” by Benke et al. [Mater Sci Eng A 481-482 (2008) 522]. Mater Sci Eng A 2010;527:2437–40.

    Article  Google Scholar 

  17. Lohan NM, Pricop B, Burlacu L, Bujoreanu L-G. Using DSC for the detection of diffusion-controlled phenomena in Cu-based shape memory alloys. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5926-4.

    Google Scholar 

  18. Pelegrina JL, Romero R. Calorimetry in Cu–Zn–Al alloys under different structural and microstructural conditions. Mater Sci Eng, A. 2000;282:16–22.

    Article  Google Scholar 

  19. Salzbrenner RJ, Cohen M. On the thermodinamics of thermoelastic martensitic transformations. Acta Metall. 1979;27:739–48.

    Article  CAS  Google Scholar 

  20. Planes A, Romero R, Ahlers M. Thermal properties of the martensitic transformation of Cu-Zn and Cu-Zn-Al shape memory alloys. Scr Metall. 1989;23:989–94.

    Article  CAS  Google Scholar 

  21. Bachaga T, Rekik H, Krifa M, Suñol JJ, Khitouni M. Investigation of the enthalpy/entropy variation and structure of Ni–Mn–Sn (Co, In) melt-spun alloys. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5716-z.

    Google Scholar 

  22. de Castro Bubani F, Lovey FC, Sade ML. A short review on the interaction of precipitates and martensitic transitions in CuZnAl shape memory alloys. Funct Mater Lett. 2017;10:1740006.

    Article  Google Scholar 

  23. Zárubová N, Gemperle A, Novak V. Initial stages of y2 precipitation in an aged Cu-Al-Ni shape memory alloy. Mater Sci Eng, A. 1997;222:166–74.

    Article  Google Scholar 

  24. Araujo VEA, Gastien R, Zelaya E, Beiroa JI, Corro I, Sade M, et al. Effects on the martensitic transformations and the microstructure of CuAlNi single crystals after ageing at 473 K. J Alloys Compd. 2015;641:155–61.

    Article  CAS  Google Scholar 

  25. Cuniberti A, Montecinos S, Lovey FC. Effect of γ2-phase precipitates on the martensitic transformation of a β-CuAlBe shape memory alloy. Intermetallics. 2009;17:435–40.

    Article  CAS  Google Scholar 

  26. Pons J, Portier R. Accommodation of γ-phase precipitates in Cu-Zn-Al shape memory alloys studied by high resolution electron microscopy. Acta Mater. 1997;45:2109–20.

    Article  CAS  Google Scholar 

  27. Pons J, Cesari E. Precipitates in β Cu-Zn-Al: Iinfluence on Martensitic Transformations. Thermochim Acta. 1989;145:237–43.

    Article  CAS  Google Scholar 

  28. Lovey FC, Torra V, Isalgué A, Roqueta D, Sade M. Interaction of single variant martensitic transformation with small γ type precipitates in CuZnAl. Acta Metall Mater. 1994;42:453–60.

    Article  CAS  Google Scholar 

  29. Lovey FC, Torra V. Shape memory in Cu-based alloys: phenomenological behavior at the mesoscale level and interaction of martensitic transformation with structural defects in Cu-Zn-Al. Prog Mater Sci. 1999;44:189–289.

    Article  CAS  Google Scholar 

  30. Auguet C, Cesari E, Rapacioli R, Mañosa L. Effect of γ precipitates on the martensitic transformation of β CuZnAl studied by calorimetry. Scr Metall. 1989;23:579–83.

    Article  CAS  Google Scholar 

  31. Pons J, Cesari E. Martensitic Transformation Cycling in a β Cu-Zn-Al Alloy Containing γ-Precipitates. Acta Met Mater. 1993;41:2547–55.

    Article  CAS  Google Scholar 

  32. Liu Y, McCormick PG. Thermodynamic analysis of the martensitic transformation in NiTi-I. Effect of heat treatment on transformation behaviour. Acta Metall Mater. 1994;42:2401–6.

    Article  CAS  Google Scholar 

  33. Cuniberti A, Romero R, Ahlers M. The plastic deformation of long range ordered 18R martensitic single crystals of Cu-Zn-Al alloys. Scr Metall Mater. 1992;26:495–500.

    Article  CAS  Google Scholar 

  34. Umakoshi Y, Yamaguchi M, Yamane T. Deformation and fracture behaviour of the alloy Cu2MnAl single crystals. Acta Metall. 1984;32:649–54.

    Article  CAS  Google Scholar 

  35. Cuniberti A, Romero R. Differential scanning calorimetry study of deformed Cu-Zn-Al martensite. Scr Mater. 2004;51:315–20.

    Article  CAS  Google Scholar 

  36. Yawny A, Lovey FC, Torra V. Entropy production in single-crystal single-interface martensite transformation. Scr Metall Mater. 1995;32:439–44.

    Article  CAS  Google Scholar 

  37. Wollants P, Roos JR, Delaey L. Thermally and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics. Prog Mater Sci. 1993;37:227–88.

    Article  CAS  Google Scholar 

  38. Lashley JC, Drymiotis FR, Safarik DJ, Smith JL, Romero R, Fisher RA, et al. Contribution of low-frequency modes to the specific heat of Cu-Zn-Al shape-memory alloys. Phys Rev B. 2007;75:64304.

    Article  Google Scholar 

  39. Tuncer N, Qiao L, Radovitzky R, Schuh CA. Thermally induced martensitic transformations in Cu-based shape memory alloy microwires. J Mater Sci. 2015;50:7473–87.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been carried out with the financial support of the CONICET, ANPCYT, SECAT-UNCPBA and CICPBA, Argentina. We are grateful for our fruitful discussions with our colleague Dra. A. Cuniberti and her critical reading of this paper’s manuscript. The authors acknowledge O. Toscano and E. Portalez for their contributions to the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Velazquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velazquez, D., Romero, R. Spinodal decomposition and martensitic transformation in Cu–Al–Mn shape memory alloy. J Therm Anal Calorim 130, 2007–2013 (2017). https://doi.org/10.1007/s10973-017-6584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6584-x

Keywords

Navigation