Skip to main content
Log in

Mechanical, thermal and antibacterial performances of acrylonitrile butadiene rubber/polyvinyl chloride loaded with Moringa oleifera leaves powder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A thermoplastic elastomeric blend from acrylonitrile butadiene rubber (NBR) and plasticized polyvinyl chloride (PVC) in the ratio (1:1) was prepared. This blend was loaded with different concentrations of mechanically ground fine powder of Moringa oleifera (MO) leaves that have an antibacterial activity, to form polymeric-based composites. The prepared composites were characterized to investigate their surface morphology and swelling behaviors. Besides, their mechanical and thermal properties were investigated. The tensile and hardness properties increased upon loading (MO) up to 20 phr. Thermogravimteric analysis (TGA) and derivative thermogravimetry (DTG) curves did not show complete deterioration upon introducing MO into the polymeric matrix. Differential scanning calorimetry (DSC) showed some shifts in the endo- and exotherms of DSC curves for PVC and NBR/PVC blend in the presence and in the absence of M. oleifera. The samples were tested biologically against Gram-positive and Gram-negative bacteria to show significant antibacterial activities. The antibacterial potency of the NBR/PVC blend increased with elevating the concentration of MO powder from 5 to 25% by mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li H, Jiang X, Cui H, Wang F, Zhang X, Yang L, Wang C. Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive. J Anal Appl Pyrolysis. 2015;115:37–42.

    CAS  Google Scholar 

  2. Hashim F, Ismail H, Rusli A. Properties and characterization of ([Mengkuang leaf fiber]-filled ethylene vinyl acetate)/(natural rubber) blend: effects of blending sequences and mengkuang leaf fiber loading. J Vinyl Addit Technol. 2018;24:109–15.

    CAS  Google Scholar 

  3. Yang HS, Park ES. Mechanical properties and antimicrobial activity of silicone rubber compounds containing acrylated norfloxacin and its polymer. Macromol Mater Eng. 2006;291:621–8.

    CAS  Google Scholar 

  4. George J, Varughese KT, Thomas S. Dynamically vulcanised thermoplastic elastomer blends of polyethylene and nitrile rubber. Polymer. 2000;41(4):1507–17.

    CAS  Google Scholar 

  5. El-Nemr KF, Khalil AM, Fathy ES. Thermoplastic elastomers based on waste rubber and expanded polystyrene: role of devulcanization and ionizing radiation. Int J Polym Anal Charact. 2018;23:58–69.

    CAS  Google Scholar 

  6. Ahmad AA, Baharum A. Biocomposite of epoxidized natural rubber/poly (lactic acid)/catappa leaves as shoe insole. J Polym Sci Technol. 2019;3:20–8.

    Google Scholar 

  7. Abou Zeid MM, Shaltout NA, Khalil AM, El Miligy AA. Effect of different coagents on physico-chemical properties of electron beam cured NBR/HDPE composites reinforced with HAF carbon black. Polym Compos. 2008;29:1321–7.

    Google Scholar 

  8. Moghri M, Zanjanijam AR, Seifi L, Ramezani M. An Investigation on rheological behavior of the PVC/NBR/nanoclay nanocomposites by torque rheometry: the effects of formulation variables using response surface approach. J Inorg Organomet Polym. 2017;27(Suppl 1):264–73.

    CAS  Google Scholar 

  9. Pappa A, Mikedi K, Agapiou A, Karma S, Pallis GC, Statheropoulos M, Burke M. TG–MS analysis of nitrile butadiene rubber blends (NBR/PVC). J Anal Appl Pyrolysis. 2011;92:106–10.

    CAS  Google Scholar 

  10. Zakrzewski GA. Investigation of the compatibility of butadiene-acrylonitrile copolymers with poly(vinyl chloride). Polymer. 1973;14:347–51.

    CAS  Google Scholar 

  11. Liu Z, Zhu X, Wu L, Li Y. Effects of interfacial adhesion on the rubber toughening of poly(vinyl chloride): part 1. Impact tests. Polymer. 2001;42:737–46.

    CAS  Google Scholar 

  12. Ismail H, Yusof AMM. Blend of waste poly(vinyl chloride) (PVCw)/acrylonitrile butadiene rubber (NBR): the effect of maleic anhydride (MAH). Polym Test. 2004;23:675–83.

    CAS  Google Scholar 

  13. Wisittanawat U, Thanawan S, Amornsakchai T. Mechanical properties of highly aligned short pineapple leaf fiber reinforced–nitrile rubber composite: effect of fiber content and bonding agent. Polym Test. 2014;35:20–7.

    CAS  Google Scholar 

  14. Forst MC, Reynolds MM, Meyerhoff ME. Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials. 2005;26:685–93.

    Google Scholar 

  15. Bower CK, Parker JE, Higgins AZ, Oest ME, Wilson JT, Valentine BA, Bothwell MK, Mc Guire J. Protein antimicrobial barriers to bacterial adhesion: in vitro and in vivo evaluation of nisin-treated implantable materials. Colloids Surf B. 2002;25:81–90.

    CAS  Google Scholar 

  16. Chen KS, Ku YA, Lee CH, Lin HR, Lin FH, Chen TM. Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface. Mater Sci Eng C. 2005;26:1–7.

    Google Scholar 

  17. Kalyon BD, Olgun U. Antibacterial efficacy of triclosan-incorporated polymers. Am J Infect Control. 2001;29:124–5.

    CAS  PubMed  Google Scholar 

  18. Akovali G, Torun TT, Bayramdi E, Erink NK. Mechanical properties and surface energies of low density polyethylene-poly(vinyl chloride) blends. Polymer. 1998;39:1363–8.

    CAS  Google Scholar 

  19. Rabie ST, El-Saidi MMT, Mohamed NR. Synthesis of biologically active and photostable rigid poly(vinyl chloride). J Biomed Mater Res A. 2012;100A:3503–10.

    CAS  Google Scholar 

  20. Rabie ST, Khalil AM. Antimicrobial agents as photostabilizers for rigid poly(vinyl chloride). Polym Adv Technol. 2012;23:1394–402.

    CAS  Google Scholar 

  21. Khalil AM, Rabie ST. Antimicrobial behavior and photostability of polyvinyl chloride/1-vinylimidazole nanocomposites loaded with silver or copper nanoparticles. J Vinyl Addit Technol. 2017;23(S1):E25–E33.

    CAS  Google Scholar 

  22. El-Sayed AA, Khalil AM, El-Shahat M, Khaireldin NY, Rabie ST. Antimicrobial activity of PVC-pyrazolone-silver nanocomposites. J Macromol Sci Pure Appl Chem. 2016;53(6):346–53.

    CAS  Google Scholar 

  23. Leone A, Spada A, Battezzati A, Schiraldi A, Aristil J, Bertoli S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera leaves: an overview. Int J Mol Sci. 2015;16:12791–835.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Teixeira EM, Carvalho MR, Neves VA, Silva MA, Arantes-Pereira L. Chemical characteristics and fractionation of proteins from Moringa oleifera Lam. leaves. Food Chem. 2014;147:51–4.

    CAS  PubMed  Google Scholar 

  25. Leone A, Fiorillo G, Criscuoli F, Ravasenghi S, Santagostini L, Fico G, Spadafranca A, Battezzati A, Schiraldi A, Pozzi F, di Lello S, Filippini S, Bertoli S. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in Chad, Sahrawi refugee camps, and Haiti. Int J Mol Sci. 2015;16:18923–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Moura MC, Trentin DS, Napoleao TH, Primon‐Barros M, Xavier AS, Carneiro NP, Paiva PMG, Macedo AJ, Coelho LCBB. Multi‐effect of the water‐soluble Moringa oleifera lectin against Serratia marcescens and Bacillus sp.: antibacterial, antibiofilm and anti‐adhesive properties. J Appl Microbiol. 2017;123(4):861–74.

    CAS  PubMed  Google Scholar 

  27. Guillen-Roman CJ, Guevara-Gonzalez RG, Rocha-Guzman NE, Mercado-Luna A, Perez-Perez MCI. Effect of nitrogen privation on the phenolics contents, antioxidant and antibacterial activities in Moringa oleifera leaves. Ind Crop Prod. 2018;114:45–51.

    CAS  Google Scholar 

  28. Ndhlala AR, Mulaudzi R, Ncube B, Abdelgadir HA, du Plooy CP, Staden JV. Antioxidant, antimicrobial and phytochemical variations in thirteen Moringa oleifera Lam. cultivars. Molecules. 2014;19:10480–94.

    PubMed  PubMed Central  Google Scholar 

  29. Isingoma BE, Samuel M, Edward K. Determination of the minimum inhibition concentration of Moringa oleifera leaf powder against some common diarrhoea causing pathogens. J Food Nutr Res. 2018;6:365–9.

    CAS  Google Scholar 

  30. Singh B, Kumar A. Network formation of Moringa oleifera gum by radiation induced crosslinking: evaluation of drug delivery, network parameters and biomedical properties. Int J Biol Macromol. 2018;108:477–88.

    CAS  PubMed  Google Scholar 

  31. Hani NM, Torkamani AE, Azarian MH, Mahmood KWA, Ngalim SH. Characterisation of electrospun gelatine nanofibres encapsulated with Moringa oleifera bioactive extract. J Sci Food Agric. 2017;97:3348–58.

    CAS  PubMed  Google Scholar 

  32. Fayemi OE, Ekennia AC, Katata-Seru L, Ebokaiwe AP, Ijomone OM, Onwudiwe DC, Ebenso EE. Antimicrobial and wound healing properties of polyacrylonitrile-moringa extract nanofibers. ACS Omega. 2018;3:4791–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jeong JH, Shin KS, Lee JW, Park EJ, Son S. Analysis of a novel class 1 integron containing metallo-beta-lactamase gene VIM-2 in Pseudomonas aeruginosa. J Microbiol. 2009;47:753–9.

    CAS  PubMed  Google Scholar 

  34. Kanokwiroon K, Teanpaisan R, Wititsuwannakul D, Hooper AB, Wititsuwannakul R. Antimicrobial activity of a protein purified from the latex of hevea brasiliensis on oral microorganisms. Mycoses. 2008;51:301–7.

    CAS  PubMed  Google Scholar 

  35. Matar ML, Ostrosky-Zeichner L, Paetznick VL, Rodriguez JR, Chen E, Rex JH. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob Agents Chemother. 2003;47:1647–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishiaku US, Lim FS, Ishak ZM, Perera MS. Mechanical properties and thermooxidative aging of a ternary blend, PVC/ENR/NBR, compared with the binary blends of PVC. Polym Plast Technol. 1999;38(5):939–54.

    CAS  Google Scholar 

  37. Braun D, Bohringer B, Eidam N, Fischer M, Kommerling S. Degradation and stabilization of PVC in blends. Angew Makromol Chem. 1994;216(1):1–19.

    CAS  Google Scholar 

  38. Qi Y, Wu W, Han L, Qu H, Han X, Wang A, Xu J. Using TG-FTIR and XPS to understand thermal degradation and flame-retardant mechanism of flexible poly(vinyl chloride) filled with metallic ferrites. J Therm Anal Calorim. 2016;123:1263–71.

    CAS  Google Scholar 

  39. Woo L, Ling MT, Chan E. The oxidative inducation test applied to medical PVC and other polymers. J Vinyl Technol. 1991;13(4):199–203.

    CAS  Google Scholar 

  40. Janowska G, Rybinski P. Influence of carbon black on thermal properties and flammability of cross-linked elastomers. J Therm Anal Calorim. 2008;91:697–701.

    CAS  Google Scholar 

  41. Oliveira AM, Fernandes MS, de Abreu Filho BA, Gomes RG, Bergamasco R. Inhibition and removal of staphylococcal biofilms using Moringa oleifera Lam. aqueous and saline extracts. J Environ Chem Eng. 2018;6:2011–6.

    Google Scholar 

  42. Gupta S, Jain R, Kachhwaha S, Kothari SL. Nutritional and medicinal applications of Moringa oleifera Lam Review of current status and future possibilities. J Herb Med. 2018;11:1–11.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Research Centre (NRC)—Egypt—for supporting this work financially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Khalil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, A.M., Rabie, S.T. Mechanical, thermal and antibacterial performances of acrylonitrile butadiene rubber/polyvinyl chloride loaded with Moringa oleifera leaves powder. J Therm Anal Calorim 143, 2973–2981 (2021). https://doi.org/10.1007/s10973-019-09194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09194-5

Keywords

Navigation