Skip to main content
Log in

The gel content effect on rheological and physical properties of cured acrylonitrile-butadiene rubber/poly(ethylene-co-vinyl acetate)/organo-montmorillonite nanocomposites

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The present work demonstrates the relationship between the tensile and hardness properties, crystalline structure as well as rheological behavior and gel content for the organo-montmorillonite (OMMT) filled poly(ethylene-co-vinyl acetate) (EVA)/acrylonitrile-butadiene rubber (NBR) nanocomposites. The NBR/EVA mixtures containing 5% (wt) OMMT were first provided and then cured with 0–2% (wt) dicumyl peroxide. The results of tensile experiments showed that while the elastic modulus and yield stress linearly increased, strain-at-break linearly decreased with gel content in the range studied. It was also found that the tensile strength and modulus at 100 and 300% strain increased exponentially, however, energy-at-break decreased in the form similar to an inverse S-shaped curve with gel content. The Cole–Cole plots revealed that the relaxation time increased progressively with the increase in gel content. Wide-angle X-ray diffractometry showed that the peak intensity ratio of I110/I200 was reduced by the addition of OMMT and increased somewhat with increasing in gel content. In addition, the Casson plot was employed to calculate the yield stress of the materials. The results indicated that the yield stress of the uncured nanocomoposite was higher than that of the simple blend and the value progressively increased with the increase in gel content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Usuki A, Kojima Y, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6-clay hybrid. J Mater Res 8:1179–1184

    Article  CAS  Google Scholar 

  2. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J Polym Sci Part A Polym Chem 31:983–986

    Article  CAS  Google Scholar 

  3. Chiu F-C, Lai S-M, Ti K-T (2009) Characterization and comparison of metallocene-catalyzed polyethylene/thermoplastic starch blends and nanocomposites. Polym Test 28:243–250

    Article  CAS  Google Scholar 

  4. Attaran SA, Hassan A, Wahit MU (2015) Effects of ENR and OMMT on barrier and tensile properties of LDPE nanocomposite film. Iran Polym J 24:367–378

    Article  CAS  Google Scholar 

  5. Rezaei Abadchi M, Jalali-Arani A (2015) Synergistic effects of nano-scale polybutadiene rubber powder (PBRP) and nanoclay on the structure, dynamic mechanical and thermal properties of polypropylene (PP). Iran Polym J 24:805–813

    Article  CAS  Google Scholar 

  6. Mishra SB, Luyt AS (2008) Effect of organic peroxides on the morphological, thermal and tensile properties of EVA-organoclay nanocomposites. Express Polym Lett 2:256–264

    Article  CAS  Google Scholar 

  7. Mahallati P, Arefazar A, Naderi G (2010) Thermoplastic elastomer nanocomposites based on PA6/NBR. Int Polym Proc 25:132–138

    Article  CAS  Google Scholar 

  8. García-López D, Gobernado-Mitre I, Fernández JF, Merino JC, Pastor JM (2005) Influence of clay modification process in PA6-layered silicate nanocomposite properties. Polymer 46:2758–2765

    Article  CAS  Google Scholar 

  9. Bhattacharya A, Mondal S, Bandyopadhyay A (2013) Maleic anhydride grafted atactic polypropylene as exciting new compatibilizer for poly(ethylene-co-octene) organically modified clay nanocomposites: investigations on mechanical and rheological properties. Ind Eng Chem Res 52:14143–14153

    Article  CAS  Google Scholar 

  10. Zhang Z, Lee J-H, Lee S-H, Heo S-B, Pittman CU Jr (2008) Morphology, thermal stability and rheology of poly(propylene carbonate)/organoclay nanocomposites with different pillaring agents. Polymer 49:2947–2956

    Article  CAS  Google Scholar 

  11. Patel J, Maiti M, Naskar K, Bhowmick AK (2006) Nanocomposites based on thermoplastic elastomeric blends of styrene acrylonitrile and ethylene vinyl acetate: effect of nature and loading of nanoclays and dynamic vulcanization. Polym Polym Compos 14:515–525

    CAS  Google Scholar 

  12. Mishra JK, Hwang K-J, Ha C-S (2005) Preparation, mechanical and rheological properties of a thermoplastic polyolefin (TPO)/organoclay nanocomposite with reference to the effect of maleic anhydride modified polypropylene as a compatibilizer. Polymer 46:1995–2002

    Article  CAS  Google Scholar 

  13. Mishra JK, Ryou J-H, Kim G-H, Hwang K-J, Kim I, Ha C-S (2004) Preparation and properties of a new thermoplastic vulcanizate (TPV)/organoclay nanocomposite using maleic anhydride functionalized polypropylene as a compatibilizer. Mater Lett 8:3481–3485

    Article  CAS  Google Scholar 

  14. Raji M, Mekhzoum MEM, Rodrigue D, Qaiss AEK, Bouhfid R (2018) Effect of silane functionalization on properties of polypropylene/clay nanocomposites. Compos Part B Eng 146:106–115

    Article  CAS  Google Scholar 

  15. Varghese H, Bhagawan SS, Rao SS, Thomas S (1995) Morphology, mechanical and viscoelastic behaviour of blends of nitrile rubber and ethylene-vinyl acetate copolymer. Eur Polym J 31:957–967

    Article  CAS  Google Scholar 

  16. Varghese H, Bhagawan SS, Prabhakaran N, Thomas S (1995) Tearing behavior and recyclability of nitrile rubber/poly(ethylene-co-vinyl acetate) blends. Mater Lett 24:333–339

    Article  CAS  Google Scholar 

  17. Varghese H, Bhagawan SS, Thomas S (1999) Transport properties of crosslinked acrylonitrile butadiene rubber/poly(ethylene-co-vinyl acetate) blends. J Polym Sci Polym Phys Ed 37:1815–1831

    Article  CAS  Google Scholar 

  18. Joseph A, Mathai AE, Thomas S (2003) Sorption and diffusion of methyl substituted benzenes through cross-linked nitrile rubber/poly(ethylene-co-vinyl acetate) blend membranes. J Membr Sci 220:13–30

    Article  CAS  Google Scholar 

  19. Varghese H, Bhagawan SS, Thomas S (2001) Thermogravimetric analysis and thermal ageing of crosslinked nitrile rubber/poly(ethylene-co-vinyl acetate) blends. J Therm Anal Calorim 63:749–763

    Article  CAS  Google Scholar 

  20. Jansen P, Garcia FG, Soares BG (2003) Effect of mercapto-modified ethylene–vinyl acetate on the curing parameters and mechanical and dynamic mechanical properties of vulcanized nitrile rubber/ethylene–vinyl acetate blends. J Appl Polym Sci 90:2391–2399

    Article  CAS  Google Scholar 

  21. Jansen P, Soares BG (2002) The effect of mercapto-modified EVA on rheological and dynamic mechanical properties of NBR/EVA blends. J Appl Polym Sci 84:2335–2334

    Article  CAS  Google Scholar 

  22. Jansen P, Soares BG (2001) Mercapto-modified copolymers in polymer blends. II. The compatibilization of NBR/EVA blends. J Appl Polym Sci 79:193–202

    Article  CAS  Google Scholar 

  23. Soares BG, Almeida MSM, Guimarães PIC (2004) The reactive compatibilization of NBR/EVA blends with oxazoline-modified nitrile rubber. Eur Polym J 40:2185–2194

    Article  CAS  Google Scholar 

  24. Asaad JN, Mansour SH, Abd-El-Messieh SL (2013) Some studies on poly(ethylene-co-vinyl acetate), acrylonitrile butadiene copolymer, and their blend reinforced with carbon black. J Reinf Plast Comp 32:1634–1645

    Article  CAS  Google Scholar 

  25. Li S, Liu T, Wang L, Wang Z (2013) Dynamically vulcanized nitrile butadiene rubber/ethylene-vinyl acetate copolymer blends compatibilized by chlorinated polyethylene. J Macromol Sci Part B52:13–21

    Article  CAS  Google Scholar 

  26. Razavi-Nouri M, Karami M (2014) Effect of rubber content on morphology and thermal and rheological behaviors of acrylonitrile-butadiene rubber/poly(ethylene-co-vinyl acetate)/organoclay nanocomposites. Polymer 55:6940–6947

    Article  CAS  Google Scholar 

  27. Razavi-Nouri M, Karami M, Naderi G (2017) Rheological behavior and morphology of acrylonitrile-butadiene rubber/poly(ethylene-co-vinyl acetate) blends filled by various organoclay contents. Appl Clay Sci 145:1–10

    Article  CAS  Google Scholar 

  28. Razavi-Nouri M, Karami M (2018) Water sorption kinetics of acrylonitrile-butadiene rubber/poly(ethylene-co-vinyl acetate)/organoclay nanocomposites. Polymer 154:101–110

    Article  CAS  Google Scholar 

  29. Razavi-Nouri M, Sabet A, Mohebbi M (2020) Thermal, tensile and rheological properties of dynamically cross-linked organoclay filled poly(ethylene-co-vinyl acetate)/acrylonitrile-butadiene rubber nanocomposites: effect of peroxide content. Polymer 190:122212

  30. Razavi-Nouri M, Sabet A, Mohebbi M (2020) Effect of organoclay content on mechanical and rheological properties of dynamically cross-linked acrylonitrile-butadiene rubber/poly(ethylene-co-vinyl acetate)/organoclay nanocomposites. Polym Bull 77:5933–5952

    Article  CAS  Google Scholar 

  31. Grande CD, Mangadlao J, Fan J, De Leon A, Delgado-Ospina J, Rojas JG, Rodrigues R, Advincula DF (2017) Chitosan cross-linked graphene oxide nanocomposite films with antimicrobial activity for application in food industry. Macromol Symp 374:1600114

    Article  CAS  Google Scholar 

  32. Razavi-Nouri M, Tayefi M, Sabet A (2017) Morphology development and thermal degradation of dynamically cured ethylene-octene copolymer/organoclay nanocomposites. Thermochim Acta 655:302–312

    Article  CAS  Google Scholar 

  33. Mishra SB, Luyt AS (2009) Effect of organic peroxides on the morphology and properties of EVA/Cloisite 15A nanocomposites. J Appl Polym Sci 112:218–225

    Article  CAS  Google Scholar 

  34. Alex R, Nah C (2006) Studies on natural rubber/acrylonitrile butadiene rubber/organoclay nanocomposite. Plast Rubber Compos 35:219–225

    Article  CAS  Google Scholar 

  35. Gatos KG, Karger-Kocsis J (2005) Effects of primary and quaternary amine intercalants on the organoclay dispersion in a sulfur-cured EPDM rubber. Polymer 46:3069–3076

    Article  CAS  Google Scholar 

  36. Peeterbroeck S, Alexandre M, Jérôme R, Dubois Ph (2005) Poly(ethylene-co-vinyl acetate)/clay nanocomposites: effect of clay nature and organic modifiers on morphology, mechanical and thermal properties. Polym Degrad Stab 90:288–294

    Article  CAS  Google Scholar 

  37. Li X, Ha C-S (2003) Nanostructure of EVA/organoclay nanocomposites: effects of kinds of organoclays and grafting of maleic anhydride onto EVA. J Appl Polym Sci 87:1901–1909

    Article  CAS  Google Scholar 

  38. Park JH, Jana SC (2003) Mechanism of exfoliation of nanoclay particles in epoxy-clay, nanocomposites. Macromolecules 36:2758–2768

    Article  CAS  Google Scholar 

  39. Taghizadeh E, Naderi G, Razavi-Nouri M (2011) Effects of organoclay on the mechanical properties and microstructure of PA6/ECO blend. Polym Test 30:327–334

    Article  CAS  Google Scholar 

  40. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer 43:5483–5491

    Article  CAS  Google Scholar 

  41. Ward IM (1971) Review: the yield behavior of polymers. J Mater Sci 6:1397–1417

    Article  CAS  Google Scholar 

  42. González L, Valentín JL, Fernández-Torres A, Rodríguez A, Marcos-Fernández A (2005) Effect of the network topology on the tensile strength of natural rubber vulcanizate at elevated temperature. J Appl Polym Sci 98:1219–1223

    Article  CAS  Google Scholar 

  43. Valentín JL, Rodríguez A, Marcos-Fernández A, González L (2005) Dicumyl peroxide cross-linking of nitrile rubbers with different content in acrylonitrile. J Appl Polym Sci 96:1–5

    Article  CAS  Google Scholar 

  44. Jansen P, Gomes AS, Soares BG (1996) The use of EVA-containing mercapto groups in natural rubber-EVA blends. II. The effect of curing system on mechanical and thermal properties of the blends. J Appl Polym Sci 61:591–598

    Article  CAS  Google Scholar 

  45. Zhao F, Bi W, Zhao S (2011) Influence of crosslink density on mechanical properties of natural rubber vulcanizates. J Macromol Sci Part B 50:1460–1469

    Article  CAS  Google Scholar 

  46. Bagheri-Kazemabad S, Fox D, Chen Y, Geever LM, Khavandi A, Bagheri R, Higginbotham CL, Zhang H, Chen B (2012) Morphology, rheology and mechanical properties of polypropylene/ethylene-octene copolymer/clay nanocomposites: effects of the compatibilizer. Compos Sci Technol 72:1697–1704

    Article  CAS  Google Scholar 

  47. Lim YT, Park OO (2001) Phase morphology and rheological behavior of polymer/layered silicate nanocomposites. Rheol Acta 40:220–229

    Article  CAS  Google Scholar 

  48. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. 1 Alternating current characteristics. J Chem Phys 9:341–351

    Article  CAS  Google Scholar 

  49. Chopra D, Kontopoulou M, Vlassopoulos D, Hatzikiriakos SG (2002) Effect of maleic anhydride content on the rheology and phase behavior of poly(styrene-co-maleic anhydride)/poly(methyl methacrylate) blends. Rheol Acta 41:10–24

    Article  CAS  Google Scholar 

  50. Li R, Yu W, Zhou C (2006) Phase behavior and its viscoelastic responses of poly(methyl methacrylate) and poly(styrene-co-maleic anhydride) blend systems. Polym Bull 56:455–466

    Article  CAS  Google Scholar 

  51. Li K, Peng J, Turng L-S, Huang H-X (2011) Dynamic rheological behavior and morphology of polylactide/poly(butylenes adipate-co-terephthalate) blends with various composition ratios. Adv Polym Technol 30:150–157

    Article  CAS  Google Scholar 

  52. Riva A, Zanetti M, Braglia M, Camino G, Falqui L (2002) Thermal degradation and rheological behaviour of EVA/montmorillonite nanocomposites. Polym Degrad Stab 77:299–304

    Article  CAS  Google Scholar 

  53. Li S, Xiao M, Wei D, Xiao H, Hu F, Zheng A (2009) The melt grafting preparation and rheological characterization of long chain branching polypropylene. Polymer 50:6121–6128

    Article  CAS  Google Scholar 

  54. Lyoo WS, Kim JH, Choi JH, Kim BC, Blackwell J (2001) Role of degree of saponification in the shear-induced molecular orientation of syndiotacticity-rich ultrahigh molecular weight poly(vinyl alcohol). Macromolecules 34:3982–3987

    Article  CAS  Google Scholar 

  55. Akhlaghi O, Akbulut O, Menceloglu YZ (2015) Shear and extensional rheological characterization of poly(acrylonitrile)/halloysite nanocomposite solutions. Eur Polym J 73:17–25

    Article  CAS  Google Scholar 

  56. Pang Y, Yang J, Curtis TE, Luo S, Huang D, Feng Z, Morales-Ferreiro JO, Sapkota P, Lei F, Zhang J, Zhang Q, Lee E, Huang Y, Guo R, Ptasinska S, Roeder RK, Luo T (2019) Exfoliated graphene leads to exceptional mechanical properties of polymer composite films. ACS Nano 13:1097–1106

    CAS  PubMed  Google Scholar 

  57. Kim J-H, Lee S, Kim BC, Shin B-S, Jeon J-Y, Chae DW (2016) Effect of VA and MWNT contents on the rheological and physical properties of EVA. Korea-Aust Rheol J 28:41–49

    Article  Google Scholar 

  58. Chae DW, Hong SM (2010) Dynamic crystallization behavior, morphology, and physical properties of highly concentrated poly(vinylidene fluoride)/silver nanocomposites. Polym Sci Part B 48:2379–2385

    Article  CAS  Google Scholar 

  59. Chae DW, Lee KH, Kim BC (2006) Rheological properties of ferrite nanocomposites based on nylon-66. Polym Sci Part B 44:371–377

    Article  CAS  Google Scholar 

  60. Dubey KA, Bhardwaj YK, Chaudhari CV, Sabharwal S (2011) LDPE/EVA/PCR/MWNT nanocomposites: radiation crosslinking and physicomechanical characteristics. Polym Compos 32:737–746

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Iran Polymer and Petrochemical Institute (Grant No. 31761207) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Razavi-Nouri.

Ethics declarations

Conflict of interest

The authors would like to certify that they have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razavi-Nouri, M., Sabet, A. & Mohebbi, M. The gel content effect on rheological and physical properties of cured acrylonitrile-butadiene rubber/poly(ethylene-co-vinyl acetate)/organo-montmorillonite nanocomposites. Iran Polym J 30, 965–974 (2021). https://doi.org/10.1007/s13726-021-00939-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00939-4

Keywords

Navigation