Skip to main content
Log in

The competitive behavior for O2 and CO2 reaction during char oxy-fuel combustion: effects of temperature and inherent minerals

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Coal O2/CO2 combustion is a promising carbon capture and storage technology for coal-fired power plant. Char consumption rate prediction is essential for the boiler design, but challenging for O2/CO2 combustion since char reaction behavior within dual reactive gas media is complex. There is also a doubt of whether or not the O2 reaction and CO2 reaction occur independently, whereby the overall rate would be simply additive, or the two reactions compete for the same char actives, in which case the rate prediction could be more complicated. Here, the competitive behavior for O2 and CO2 reactions of char active sites was investigated via thermogravimetric approach, with a focus on the effect of temperature and inherent mineral composition. For char combustion within O2/CO2 environment with molar fractions of 30/70, the contribution of O2 to char consumption is the same as the O2 reaction alone. However, as being out-competed by O2, only 37% CO2 could occupy char active sites and react. Consequently, the overall char reaction rate within O2/CO2 is only 83% of the sum of that for individual gases at 900 °C. With increasing temperature, this ratio becomes even smaller, as the contribution of CO2 that being out-competed (to the sum of individual gases) is larger. With increasing O2 fraction, it occupied more active sites, thus further inhibiting CO2 reaction. The inherent alkali and alkaline earth metal provides the char with more active sites, thus muting the competition and inhibition for CO2 gasification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toftegaard MB, Brix J, Jensen PA, Glarborg P, Jensen AD. Oxy-fuel combustion of solid fuels. Prog Energy Combust Sci. 2010;36(5):581–625.

    Article  CAS  Google Scholar 

  2. Wall T, Liu YH, Spero C, Elliott L, Khare S, Rathnam R, et al. An overview on oxyfuel coal combustion-State of the art research and technology development. Chem Eng Res Des. 2009;87(8A):1003–16.

    Article  CAS  Google Scholar 

  3. Zhu SJ, Lyu QG, Zhu JG, Wu HX, Fan YQ. Low NOx emissions from pulverized coal moderate or intense low-oxygen dilution combustion in O2/CO2 preheated by a circulating fluidized bed. Energy Fuels. 2018;32(10):10956–63.

    Article  CAS  Google Scholar 

  4. Bu Y, Dai X, Lu P. Release characteristics of semi-volatile heavy metals during co-combustion of sewage sludge and coal under the O2/CO2 atmosphere. J Therm Anal Calorim. 2018;133(2):1041–7.

    Article  CAS  Google Scholar 

  5. Lei M, Wang C, Wang S. Effect of pyrolysis characteristics on ignition mechanism and NO emission of pulverized coal during oxy-fuel combustion. J Therm Anal Calorim. 2014;117(2):665–73.

    Article  CAS  Google Scholar 

  6. Gonzalo-Tirado C, Jiménez S, Ballester J. Kinetics of CO2 gasification for coals of different ranks under oxy-combustion conditions. Combust Flame. 2013;160(2):411–6.

    Article  CAS  Google Scholar 

  7. Ma L, Guo AL, Fang QY, Wang TX, Zhang C, Chen G. Combustion interactions of blended coals in an O2/CO2 mixture in a drop tube furnace: experimental investigation and numerical simulation. Appl Therm Eng. 2018;145:184–200.

    Article  CAS  Google Scholar 

  8. Borrego AG, Alvarez D. Comparison of chars obtained under oxy-fuel and conventional pulverized coal combustion atmospheres. Energy Fuels. 2007;21(6):3171–9.

    Article  CAS  Google Scholar 

  9. Zellagui S, Schönnenbeck C, Zouaoui N, Brilhac J-F, Authier O, Thunin E, et al. Fast pyrolysis of coals under N2 and CO2 atmospheres. J Therm Anal Calorim. 2018;133(3):1535–47.

    Article  CAS  Google Scholar 

  10. Maffei T, Khatami R, Pierucci S, Faravelli T, Ranzi E, Levendis YA. Experimental and modeling study of single coal particle combustion in O2/N2 and Oxy-fuel (O2/CO2) atmospheres. Combust Flame. 2013;160(11):2559–72.

    Article  CAS  Google Scholar 

  11. Wei Y, Chen M, Niu S, Xue F. Experimental investigation on the oxy-fuel co-combustion behavior of anthracite coal and spent coffee grounds. J Therm Anal Calorim. 2016;124(3):1651–60.

    Article  CAS  Google Scholar 

  12. Ca Wang, Han T, Du Y, Liu Y, Che D. Diffusional effects on differences of coal char reactivity between air and oxy-fuel combustion in thermogravimetric experiments. J Therm Anal Calorim. 2016;125(2):897–904.

    Article  Google Scholar 

  13. Hecht ES, Shaddix CR, Molina A, Haynes BS. Effect of CO2 gasification reaction on oxy-combustion of pulverized coal char. Proc Combust Inst. 2011;33(2):1699–706.

    Article  CAS  Google Scholar 

  14. Pohlmann JG, Osório E, Vilela ACF, Diez MA, Borrego AG. Pulverized combustion under conventional (O2/N2) and oxy-fuel (O2/CO2) conditions of biomasses treated at different temperatures. Fuel Process Technol. 2017;155:174–82.

    Article  CAS  Google Scholar 

  15. Ca Wang, Zhang Y, Wang P, Zhang J, Du Y, Che D. Effects of silicoaluminate oxide and coal blending on combustion behaviors and kinetics of Zhundong coal under oxy-fuel condition. J Therm Anal Calorim. 2018;134(3):1975–86.

    Article  Google Scholar 

  16. Galina NR, Luna CMR, Arce G, Avila I. Comparative study on combustion and oxy-fuel combustion environments using mixtures of coal with sugarcane bagasse and biomass sorghum bagasse by the thermogravimetric analysis. J Energy Inst. 2019;92(3):741–54.

    Article  CAS  Google Scholar 

  17. Meriste T, Yörük CR, Trikkel A, Kaljuvee T, Kuusik R. TG–FTIR analysis of oxidation kinetics of some solid fuels under oxy-fuel conditions. J Therm Anal Calorim. 2013;114(2):483–9.

    Article  CAS  Google Scholar 

  18. Borrego AG, Osório E, Casal MD, Vilela ACF. Coal char combustion under a CO2-rich atmosphere: implications for pulverized coal injection in a blast furnace. Fuel Process Technol. 2008;89(11):1017–24.

    Article  CAS  Google Scholar 

  19. Jin X, Zhou Y, Zheng S. Numerical investigation of different effects of carbon dioxide properties and carbon monoxide oxidation on char particle combustion in actual and fictitious O2/CO2 environments. Fuel. 2018;217:59–65.

    Article  CAS  Google Scholar 

  20. Kim D, Choi S, Shaddix CR, Geier M. Effect of CO2 gasification reaction on char particle combustion in oxy-fuel conditions. Fuel. 2014;120:130–40.

    Article  CAS  Google Scholar 

  21. Watanabe H, Okazaki K. Effect of minerals on surface morphologies and competitive reactions during char gasification in mixtures of O2 and CO2. Proc Combust Inst. 2015;35(2):2363–71.

    Article  CAS  Google Scholar 

  22. Du Y, Ca Wang, Xin H, Che D, Mathews JP. Competitive or additive behavior for H2O and CO2 gasification of coal char? Exploration via simplistic atomistic simulation. Carbon. 2019;141:226–37.

    Article  CAS  Google Scholar 

  23. Roberts DG, Harris DJ. Char gasification kinetics in mixtures of CO2 and H2O: the role of partial pressure in determining the extent of competitive inhibition. Energy Fuels. 2014;28(12):7643–8.

    Article  CAS  Google Scholar 

  24. Zhang R, Chen Y, Lei K, Liu D. The effects of specific surface area and ash on char gasification mechanisms in the mixture of H2O, CO2, H2 and CO. Fuel. 2017;209(Supplement C):109–16.

    Article  CAS  Google Scholar 

  25. Guizani C, Escudero Sanz FJ, Salvador S. Influence of temperature and particle size on the single and mixed atmosphere gasification of biomass char with H2O and CO2. Fuel Process Technol. 2015;134:175–88.

    Article  CAS  Google Scholar 

  26. Gao M, Lv P, Yang Z, Bai Y, Li F, Xie K. Effects of Ca/Na compounds on coal gasification reactivity and char characteristics in H2O/CO2 mixtures. Fuel. 2017;206:107–16.

    Article  CAS  Google Scholar 

  27. Liu Y, Fu P, Zhang B, Yue F, Zhou H, Zheng C. Study on the surface active reactivity of coal char conversion in O2/CO2 and O2/N2 atmospheres. Fuel. 2016;181:1244–56.

    Article  CAS  Google Scholar 

  28. Li Z, Jiang L, Ouyang J, Cao L, Luo G, Yao H. A kinetic study on char oxidation in mixtures of O2, CO2 and H2O. Fuel Process Technol. 2018;179:250–7.

    Article  CAS  Google Scholar 

  29. Senneca O, Cortese L. Thermal annealing of coal at high temperature and high pressure. Effects on fragmentation and on rate of combustion, gasification and oxy-combustion. Fuel. 2014;116:221–8.

    Article  CAS  Google Scholar 

  30. Du Y, Ca Wang, Xin H, Che D, Mathews JP. Atomistic simulation of coal char oxy-fuel combustion: quantifying the influences of CO2 to char reactivity. Energy Fuels. 2019;33(10):10228–36.

    Article  CAS  Google Scholar 

  31. Prabhakar A, Sadhukhan AK, Kamila B, Gupta P. Modeling and experimental studies on CO2 gasification of coarse coal char particle. Energy Fuels. 2017;31(3):2652–62.

    Article  CAS  Google Scholar 

  32. Furmaniak S, Terzyk AP, Gauden PA, Marks NA, Powles RC, Kowalczyk P. Simulating the changes in carbon structure during the burn-off process. J Colloid Interface Sci. 2011;360(1):211–9.

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Wei J, Huo W, Yu G. Gasification under CO2–steam mixture: kinetic model study based on shared active sites. Energies. 2017;10(11):1890.

    Article  Google Scholar 

  34. Roberts DG, Harris DJ. Char gasification with O2, CO2, and H2O: effects of pressure on intrinsic reaction kinetics. Energy Fuels. 2000;14(2):483–9.

    Article  CAS  Google Scholar 

  35. Ma L, Wang TX, Liu JC, Fang QY, Guo AL, Zhang C, et al. Effect of different conditions on the combustion interactions of blended coals in O2/CO2 mixtures. J Energy Inst. 2019;92(3):413–27.

    Article  CAS  Google Scholar 

  36. Niu SL, Lu CM, Han KH, Zhao JL. Thermogravimetric analysis of combustion characteristics and kinetic parameters of pulverized coals in oxy-fuel atmosphere. J Therm Anal Calorim. 2009;98(1):267.

    Article  CAS  Google Scholar 

  37. Naidu VS, Aghalayam P, Jayanti S. Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. J Therm Anal Calorim. 2016;123(1):467–78.

    Article  CAS  Google Scholar 

  38. Feng DD, Zhao YJ, Zhang Y, Xu HH, Zhang LY, Sun SZ. Catalytic mechanism of ion-exchanging alkali and alkaline earth metallic species on biochar reactivity during CO2/H2O gasification. Fuel. 2018;212:523–32.

    Article  CAS  Google Scholar 

  39. Zou C, Zhao J, Li X, Shi R. Effects of catalysts on combustion reactivity of anthracite and coal char with low combustibility at low/high heating rate. J Therm Anal Calorim. 2016;126(3):1469–80.

    Article  CAS  Google Scholar 

  40. Guizani C, Escudero Sanz FJ, Salvador S. The gasification reactivity of high-heating-rate chars in single and mixed atmospheres of H2O and CO2. Fuel. 2013;108:812–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (51906192) and the China Postdoctoral Science Foundation (2019M653623).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defu Che.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Yu, P., Wang, J. et al. The competitive behavior for O2 and CO2 reaction during char oxy-fuel combustion: effects of temperature and inherent minerals. J Therm Anal Calorim 143, 327–334 (2021). https://doi.org/10.1007/s10973-019-09185-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09185-6

Keywords

Navigation