Skip to main content
Log in

Characterization, thermal and electrical properties of aminated PVC / oxidized MWCNT composites doped with nanographite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The composites were prepared with PVC modified with 3-(dimethylamino)-1-propylamine (aminated PVC) and MWCNT containing 2.5% carboxyl group (oxidized MWCNT) and doped with nanographite in different percentages (1, 5, 8 and 12% by mass). Thermal investigation was performed from DSC and TGA curves. From the DSC curves, it was observed that Tg temperature of aminated PVC increased with the increase in oxidized MWCNT content. At the composite containing 5% MWCNT, Tg temperature of aminated PVC decreased slightly with increasing nanographite, at the composite containing 11% MWCNT increased slightly and at the composite containing 8% MWCNT nearly fixed. While according to initial decomposition temperature doping with nanographite did not affect significantly the thermal stability of composites, the amount of residue at 500 °C increased some with doping. Conductivity was only investigated for aminated PVC/8% oxidized MWCNT/8% nanographite composite. Doping with nanographite significantly increased the conductivity of the composite. (Conductivity increased values from 10−8–10−9 S cm−1 to 10−4 S cm−1). The conductivity increased with increasing temperature at all frequencies. Conductivity-related activation energies were calculated at different frequencies, and while the frequency increased from 630 to 29,500 Hz, the activation energy decreased from 0.0228 to 0.0193 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Najafi M, Ansari R, Darvizeh A. Effect of cryogenic aging on nanophased fiber metal laminates and glass/epoxy composites. Polym Compos. 2019;40(6):2523–33.

    CAS  Google Scholar 

  2. Reddy KR, Karthik K, Prasad SB, Soni SK, Jeong HM, Raghu AV. Enhanced photocatalytic activity of nanostructured titanium dioxide/polyaniline hybrid photocatalysts. Polyhedron. 2016;120:169–74.

    CAS  Google Scholar 

  3. Reddy KR, Lee K-P, Gopalan AI. Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol. 2007;7(9):3117–25.

    CAS  PubMed  Google Scholar 

  4. Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y. Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met. 2009;159(7–8):595–603.

    CAS  Google Scholar 

  5. Reddy KR, Lee KP, Gopalan AI. Novel electrically conductive and ferromagnetic composites of poly (aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J Appl Polym Sci. 2007;106(2):1181–91.

    CAS  Google Scholar 

  6. Reddy KR, Lee K-P, Lee Y, Gopalan AI. Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett. 2008;62(12–13):1815–8.

    CAS  Google Scholar 

  7. Mamunya Y. Carbon nanotubes as conductive filler in segregated polymer composites-electrical properties. IntechOpen: Carbon nanotubes-polymer nanocomposites; 2011.

    Google Scholar 

  8. Reddy KR, Jeong HM, Lee Y, Raghu AV. Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Part A Polym Chem. 2010;48(7):1477–84.

    CAS  Google Scholar 

  9. Son DR, Raghu AV, Reddy KR, Jeong HM. Compatibility of thermally reduced graphene with polyesters. J Macromol Sci Pt B. 2016;55(11):1099–110.

    CAS  Google Scholar 

  10. Han SJ, Lee H-I, Jeong HM, Kim BK, Raghu AV, Reddy KR. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene. J Macromol Sci Pt B. 2014;53(7):1193–204.

    CAS  Google Scholar 

  11. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, et al. Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol. 2014;98:1–8.

    CAS  Google Scholar 

  12. Choi SH, Kim DH, Raghu AV, Reddy KR, Lee H-I, Yoon KS, et al. Properties of graphene/waterborne polyurethane nanocomposites cast from colloidal dispersion mixtures. J Macromol Sci Pt B. 2012;51(1):197–207.

    CAS  Google Scholar 

  13. Lee YR, Kim SC, Lee H-I, Jeong HM, Raghu AV, Reddy KR, et al. Graphite oxides as effective fire retardants of epoxy resin. Macromol Res. 2011;19(1):66–71.

    CAS  Google Scholar 

  14. Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes—the route toward applications. Science. 2002;297(5582):787–92.

    CAS  PubMed  Google Scholar 

  15. Kumar NA, Kim SH, Kim JS, Kim JT, Jeong YT. Functionalization of multi-walled carbon nanotubes with cysteamine for the construction of CNT/Gold nanoparticle hybrid nanostructures. Surf Rev Lett. 2009;16(03):487–92.

    CAS  Google Scholar 

  16. Baskaran D, Mays JW, Bratcher MS. Polymer adsorption in the grafting reactions of hydroxyl terminal polymers with multi-walled carbon nanotubes. Polymer. 2005;46(14):5050–7.

    CAS  Google Scholar 

  17. Chen Y, Haddon R, Fang S, Rao AM, Eklund P, Lee W, et al. Chemical attachment of organic functional groups to single-walled carbon nanotube material. J Mater Res. 1998;13(9):2423–31.

    CAS  Google Scholar 

  18. Qin S, Qin D, Ford WT, Resasco DE, Herrera JE. Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate. J Am Chem Soc. 2004;126(1):170–6.

    CAS  PubMed  Google Scholar 

  19. Zou W, Du Z-J, Liu Y-X, Yang X, Li H-Q, Zhang C. Functionalization of MWNTs using polyacryloyl chloride and the properties of CNT—epoxy matrix nanocomposites. Compos Sci Technol. 2008;68(15–16):3259–64.

    CAS  Google Scholar 

  20. Kong H, Gao C, Yan D. Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J Am Chem Soc. 2004;126(2):412–3.

    CAS  PubMed  Google Scholar 

  21. Kumar NA, Ganapathy HS, Kim JS, Jeong YS, Jeong YT. Preparation of poly 2-hydroxyethyl methacrylate functionalized carbon nanotubes as novel biomaterial nanocomposites. Eur Polymer J. 2008;44(3):579–86.

    CAS  Google Scholar 

  22. Yılmaz S, Coşkun M. Synthesis of an ABC type triblock copolymer on MWCNT Surface: structural, thermal, electrical and SEM characterization. El-Cezerî J Sci Eng. 2017;4:177–89.

    Google Scholar 

  23. Mickelson E, Chiang I, Zimmerman J, Boul P, Lozano J, Liu J, et al. Solvation of fluorinated single-wall carbon nanotubes in alcohol solvents. J Phys Chem B. 1999;103(21):4318–22.

    CAS  Google Scholar 

  24. Saini RK, Chiang IW, Peng H, Smalley R, Billups W, Hauge RH, et al. Covalent sidewall functionalization of single wall carbon nanotubes. J Am Chem Soc. 2003;125(12):3617–21.

    CAS  PubMed  Google Scholar 

  25. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II Drug delivery and biocompatibility issues. Nanomed Nanotechnol Biol Med. 2008;4(3):183–200.

    CAS  Google Scholar 

  26. Wang Z, Zhang Q, Kuehner D, Xu X, Ivaska A, Niu L. The synthesis of ionic-liquid-functionalized multiwalled carbon nanotubes decorated with highly dispersed Au nanoparticles and their use in oxygen reduction by electrocatalysis. Carbon. 2008;46(13):1687–92.

    CAS  Google Scholar 

  27. González-Vidal N, de Ilarduya AM, Muñoz-Guerra S, Castell P, Martínez MT. Synthesis and properties of poly (hexamethylene terephthalate)/multiwall carbon nanotubes nanocomposites. Compos Sci Technol. 2010;70(5):789–96.

    Google Scholar 

  28. Coşkun M, Yılmaz S. Poli (glisidil metakrilat-ko-stiren): Sentezi, karakterizasyonu, aminlenmiş MWCNT ile reaksiyonu ve termal inceleme. El-Cezeri J Sci Eng 5(2):537–46.

    Google Scholar 

  29. Djidjelli H, Martinez-Vega JJ, Farenc J, Benachour D. Effect of wood flour content on the thermal, mechanical and dielectric properties of poly (vinyl chloride). Macromol Mater Eng. 2002;287(9):611–8.

    CAS  Google Scholar 

  30. Matuana LM, Park CB, Balatinecz JJ. Cell morphology and property relationships of microcellular foamed pvc/wood-fiber composites. Polym Eng Sci. 1998;38(11):1862–72.

    CAS  Google Scholar 

  31. Peprnicek T, Kalendová A, Pavlová E, Simonik J, Duchet J, Gérard J-F. Poly (vinyl chloride)-paste/clay nanocomposites: investigation of thermal and morphological characteristics. Polym Degrad Stab. 2006;91(12):3322–9.

    CAS  Google Scholar 

  32. Sun S, Li C, Zhang L, Du H, Burnell-Gray J. Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments. Polym Int. 2006;55(2):158–64.

    CAS  Google Scholar 

  33. Yazdani H, Hatami K, Khosravi E, Harper K, Grady BP. Strain-sensitive conductivity of carbon black-filled PVC composites subjected to cyclic loading. Carbon. 2014;79:393–405.

    CAS  Google Scholar 

  34. Tao Y, Feng W, Ding G, Cheng G. Polyaniline nanorods/PVC composites with antistatic properties. Russ J Phys Chem A. 2015;89(8):1445–8.

    CAS  Google Scholar 

  35. Conn C, Booth N, Unsworth J. Preparation of a flexible polyaniline-pvc composite. Adv Mater. 1995;7(9):790–2.

    CAS  Google Scholar 

  36. Ouyang M, Chan CM. Electrical and mechanical properties of pre-localized polypyrrole/poly (vinyl chloride) conductive composites. Polym Eng Sci. 1996;36(21):2676–82.

    Google Scholar 

  37. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S. Flexible conductive graphene/poly (vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon. 2011;49(1):198–205.

    CAS  Google Scholar 

  38. Al-Ramadhan Z, Hashim A, Ali M, Jewad A. Synthesis and study the electrical properties of carbon nanotubes-polyvinylchloride composites. Iraqi J Phys. 2012;10(18):147–50.

    Google Scholar 

  39. Saeed AA, Balwa BD. Structural and AC electrical properties of (LDPE-MWCNTs) polymer nanocomposite. J Coll Educ. 2016;5(5):49–62.

    Google Scholar 

  40. Abdullah ET, Naje AN. AC electrical and dielectric properties of PVC-MWCNT nanocomposites. Indian J Sci Technol. 2011;4(7):731–5.

    CAS  Google Scholar 

  41. Mamunya Y, Boudenne A, Lebovka N, Ibos L, Candau Y, Lisunova M. Electrical and thermophysical behaviour of PVC-MWCNT nanocomposites. Compos Sci Technol. 2008;68(9):1981–8.

    CAS  Google Scholar 

  42. Abdullah ET, Hasan SM, Naje AN. Optical properties of PVC-MWCNT nano composites. 2013.

  43. Skórczewska K, Chmıelewska D, Pıszczek K, Tomaszewska J. Obtaining PVC/CNT nanocomposites with the use of dispersing agents. Chemic; 2011.

  44. Skórczewska K, Tomaszewska J, Piszczek K, editors. Influence of MWCNT on the processing properties and structure of PVC composites. Macromolecular Symposia; 2018: Wiley Online Library.

  45. Ahmad MA, Güven G, Sarıkavaklı N. Some features of doping of nano-graphite in natural coir fibre epoxy-composites. Eur J Sci Technol. 2019;15:491–8.

    Google Scholar 

  46. Khan U, O’Connor I, Gun’ko YK, Coleman JN. The preparation of hybrid films of carbon nanotubes and nano-graphite/graphene with excellent mechanical and electrical properties. Carbon. 2010;48(10):2825–30.

    CAS  Google Scholar 

  47. Zhao H, Du A, Ling M, Battaglia V, Liu G. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application. Electrochim Acta. 2016;209:159–62.

    CAS  Google Scholar 

  48. Chen GH, Wu DJ, Weng WG, Yan WL. Dispersion of graphite nanosheets in a polymer matrix and the conducting property of the nanocomposites. Polym Eng Sci. 2001;41(12):2148–54.

    CAS  Google Scholar 

  49. Guo R, Ren Z, Bi H, Xu M, Cai L. Electrical and thermal conductivity of polylactic acid (PLA)-based biocomposites by incorporation of nano-graphite fabricated with fused deposition modeling. Polymers. 2019;11(3):549.

    PubMed Central  Google Scholar 

  50. Balakrishnan B, Kumar D, Yoshida Y, Jayakrishnan A. Chemical modification of poly (vinyl chloride) resin using poly (ethylene glycol) to improve blood compatibility. Biomaterials. 2005;26(17):3495–502.

    CAS  PubMed  Google Scholar 

  51. Ma P-C, Siddiqui NA, Marom G, Kim J-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf. 2010;41(10):1345–67.

    Google Scholar 

  52. Coşkun M, Seven P. Synthesis, characterization and investigation of dielectric properties of two-armed graft copolymers prepared with methyl methacrylate and styrene onto PVC using atom transfer radical polymerization. React Funct Polym. 2011;71(4):395–401.

    Google Scholar 

  53. Wen C, Jin Z-H, Guan J-Q, Sun D-Y, Li X, Liu X-X, et al. Infrared spectroscopy studies of nanographite synthesized by explosive detonation. Chem J Chin Univ Chin Edn. 2004;25(6):1045–74.

    Google Scholar 

  54. Elliott S. Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv Phys. 1987;36(2):135–217.

    CAS  Google Scholar 

  55. Yakuphanoglu F, Yahia I, Barim G, Senkal BF. Double-walled carbon nanotube/polymer nanocomposites: electrical properties under dc and ac fields. Synth Met. 2010;160(15–16):1718–26.

    CAS  Google Scholar 

  56. Elliott S. A theory of ac conduction in chalcogenide glasses. Phil Mag. 1977;36(6):1291–304.

    CAS  Google Scholar 

  57. Harun MH, Saion E, Kassim A, Hussain MY, Mustafa IS, Omer MAA. Temperature dependence of AC electrical conductivity of PVA-PPy-FeCl3 composite polymer films, Iskandar Shahrim Mustafa2 and Muhd Ahmad Ali Omer2. Malays Polym J. 2008;3(2):24–31.

    Google Scholar 

  58. Coşkun M, Harun H, Pekdemir ME. A study on aminated PVC/oxidized MWCNT composites. Acad J Sci Res. 2019;7(2):86–94. https://doi.org/10.15413/ajsr.2018.0166.

    Article  Google Scholar 

  59. Hasan A, Hasan AA, Umran D. AC electrical conductivity analysis of (PVC-PS) blend films. Int J Appl Innov Eng Manag (IJAIEM). 2013;2(11):86–95.

    Google Scholar 

  60. Yee MJ, Mubarak N, Khalid M, Abdullah E, Jagadish P. Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci Rep. 2018;8(1):17295.

    PubMed  PubMed Central  Google Scholar 

  61. Kausar A. Polyurethane/epoxy interpenetrating polymer network. InTech.: In Aspects of Polyurethanes; 2017.

Download references

Acknowledgements

The authors would like to thank the Scientific Research Support Fund of the Firat University because of financial support to this study, Elazığ, Turkey, Project Number: FF.17.19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Coşkun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haruna, H., Pekdemir, M.E., Tukur, A. et al. Characterization, thermal and electrical properties of aminated PVC / oxidized MWCNT composites doped with nanographite. J Therm Anal Calorim 139, 3887–3895 (2020). https://doi.org/10.1007/s10973-019-09184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09184-7

Keywords

Navigation