Skip to main content
Log in

Influence of the content on properties of microwave-exfoliated graphite oxide and Ni(OH)2 composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Composites of Ni(OH)2 and microwave-exfoliated graphite oxide (MEGO) with component ratios of 20:80, 35:65, and 50:50 have been synthesized by treating a water mixture of MEGO with NiSO4 × 7H2O in a KOH solution. The structure and properties of the composites obtained have been studied using IR spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. MEGO is known to possess high stability during the charge–discharge process and relatively low specific capacitance. On the contrary, Ni(OH)2 possesses a high specific capacitance and a low stability during the charge–discharge process. Our experimental results show that the addition of MEGO to Ni(OH)2 increases the stability of the composite electrode under a charge–discharge process. Some increase in the specific capacitance during the cycling have been observed for the composites with the 35:65 and 50:50 ratios. Moreover, the specific capacitance of the 35:65 composite matches the specific capacitance of pure Ni(OH)2 after 100 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Burke, J. Power Sources 91, 37 (2000)

    Article  ADS  Google Scholar 

  2. H. Pan, J. Li, Y.P. Feng, Nanoscale Res. Lett. 5, 654 (2010)

    Article  ADS  Google Scholar 

  3. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118 (2010)

    Article  Google Scholar 

  4. Y. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Science 332, 1537 (2011)

    Article  ADS  Google Scholar 

  5. J. Huang, P. Xu, D. Cao, X. Zhou, S. Yang, Y. Li, G. Wang, J. Power Sources 246, 371 (2014)

    Article  Google Scholar 

  6. E. Frackowiak, F. Beguin, Carbon 39, 937 (2001)

    Article  Google Scholar 

  7. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  ADS  Google Scholar 

  8. M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195, 7880 (2010)

    Article  Google Scholar 

  9. C.D. Lokhande, D.P. Dubal, O.-S. Joo, Curr. Appl. Phys. 11, 255 (2011)

    Article  ADS  Google Scholar 

  10. J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995)

    Article  Google Scholar 

  11. M.S. Wu, C.M. Huang, Y.Y. Wang, C.C. Wan, Electrochim. Acta 44, 4007 (1999)

    Article  Google Scholar 

  12. E.E. Kalu, T.T. Nwoga, V. Srinivasan, J.W. Weidner, J. Power Sources 92, 163 (2001)

    Article  ADS  Google Scholar 

  13. D.-D. Zhao, S.-J. Bao, W.-J. Zhou, H.-L. Li, Electrochem. Commun. 9, 869 (2007)

    Article  Google Scholar 

  14. H. Jiang, T. Zhao, C. Li, J. Ma, J. Mater. Chem. 21, 3818 (2011)

    Article  Google Scholar 

  15. G.-W. Yang, C.-L. Xu, H.-L. Li, Chem. Commun. 10, 6537 (2008)

    Article  Google Scholar 

  16. Y.Y. Luo, G.H. Li, G.T. Duan, L.D. Zhang, Nanotechnology 17, 4278 (2006)

    Article  ADS  Google Scholar 

  17. G. Duan, W. Cai, Y. Luo, F. Sun, Adv. Funct. Mater. 17, 644 (2007)

    Article  Google Scholar 

  18. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338 (2009)

    Article  Google Scholar 

  19. H.Q. Cao, H. Zheng, K.Y. Liu, J.H. Warner, Chem. Phys. Chem. 11, 489 (2010)

    Google Scholar 

  20. J. Chang, M. Park, D. Ham, S.B. Ogale, R.S. Mane, S.-H. Han, Electrochim. Acta 53, 5016 (2008)

    Article  Google Scholar 

  21. Y. Tian, J. Yan, L. Huang, R. Xue, L. Hao, B. Yi, Mater. Chem. Phys. 143, 1164 (2014)

    Article  Google Scholar 

  22. M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, J. Solid State Electrochem. 18, 1569 (2014)

    Article  Google Scholar 

  23. X. Qin, X. Li, L. Yang, Z. Wang, B. Zheng, H. Yuan, D. Xiao, J. Alloys Compd. 610, 549 (2014)

    Article  Google Scholar 

  24. Y. Wang, S. Gai, C. Li, F. He, M. Zhang, Y. Yan, P. Yang, Electrochim. Acta 90, 673 (2013)

    Article  Google Scholar 

  25. Y.M. Shulga, S.A. Baskakov, E.I. Knerelman, G.I. Davidova, E.R. Badamshina, N.Y. Shulga, E.A. Skryleva, A.L. Agapov, D.N. Voylov, A.P. Sokolov, V.M. Martynenko, RSC Adv. 4, 587 (2014)

    Article  Google Scholar 

  26. Y.M. Shulga, A.S. Lobach, S.A. Baskakov et al., High Energy Chem. 47, 331 (2013)

    Article  Google Scholar 

  27. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  28. C.D. Wagner, L.E. Davis, M.V. Zeller, J.A. Taylor, R.H. Raymond, L.H. Gale, Surf. Interface Anal. 3, 211 (1981)

    Article  Google Scholar 

  29. S. Sarkar, M. Pradhan, A.K. Sinha, M. Basu, Y. Negishi, T. Pal, Inorg. Chem. 49, 8813 (2010)

    Article  Google Scholar 

  30. M.B.J.G. Freitas, J. Power Sources 93, 163 (2001)

    Article  ADS  Google Scholar 

  31. J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Nanoscale 3, 5103 (2011)

    Article  ADS  Google Scholar 

  32. A. Al-Hajry, A. Umar, M. Vaseem, M.S. Al-Assiri, F. El-Tantawy, M. Bououdina, S. Al-Heniti, Y.-B. Hahn, Superlattices Microstruct. 44, 216 (2008)

    Article  ADS  Google Scholar 

  33. D. Bloor, J.R. Dean, J. Phys. C: Solid State 5, 1237 (1972)

    Article  ADS  Google Scholar 

  34. Q. Song, Z. Tang, H. Guo, S.L.I. Chan, J. Power Sources 112, 428 (2002)

    Article  ADS  Google Scholar 

  35. J.T. Kloprogge, D. Wharton, L. Hickey, R.L. Frost, Am. Miner. 87, 623 (2002)

    Article  Google Scholar 

  36. J.-W. Lang, L.-B. Kong, W.-J. Wu, M. Liu, Y.-C. Luo, L. Kang, J. Solid State Electrochem. 13, 333 (2009)

    Article  Google Scholar 

  37. M.W. Roberts, R.S.C. Smart, J. Chem. Soc. Faraday I 80, 2957 (1984)

    Article  Google Scholar 

  38. A.F. Carley, S.D. Jackson, J.N. O’Shea, M.W. Roberts, Surf. Sci. 440, L868 (1999)

    Article  ADS  Google Scholar 

  39. L.M. Moroney, R.S.C. Smart, M.W. Roberts, J. Chem. Soc. Faraday Trans. I 79, 1769 (1983)

    Article  Google Scholar 

  40. A.P. Grosvenor, M.C. Biesinger, R.S.C. Smart, N.S. McIntyre, Surf. Sci. 600, 1771 (2006)

    Article  ADS  Google Scholar 

  41. M.C. Biesinger, B.P. Payne, L.W.M. Lau, A. Gerson, R.S.C. Smart, Surf. Interface Anal. 41, 324 (2009)

    Article  Google Scholar 

  42. Z. Wu, X.-L. Huang, Z.-L. Wang, J.-J. Xu, H.-G. Wang, X.-B. Zhang, Sci. Rep. 4, 3669 (2014)

    ADS  Google Scholar 

  43. C. Jiang, B. Zhan, C. Li, W. Huang, X. Dong, RSC Adv. 4, 18080 (2014)

    Article  Google Scholar 

  44. D. Menshykau, R.G. Compton, Electroanalysis 20, 2387 (2008)

    Article  Google Scholar 

  45. S. Xing, Q. Wang, Z. Ma, Y. Wu, Y. Gao, Ionics 19, 651 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the RF Ministry of Education and Science (State Assignment No. 11.1797.2014/K). The work was and performed by using the equipment of the Joint Research Center “Material Science and Metallurgy” at the National University of Science and Technology “MISIS” (project ID: RFMEFI59414X0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Gutsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulga, Y.M., Baskakov, S.A., Baskakova, Y.V. et al. Influence of the content on properties of microwave-exfoliated graphite oxide and Ni(OH)2 composites. Appl. Phys. A 122, 393 (2016). https://doi.org/10.1007/s00339-016-9824-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9824-1

Keywords

Navigation