Skip to main content
Log in

Effect of different nanoparticle-dispersed nanofluids on hydrothermal-economic performance of minichannel heat sink

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Hydrothermal and energy-economic performances of minichannel heat sink are experimentally compared by using water-based different nanoparticle-dispersed mono and hybrid nanofluids. Al2O3, AlN, CNT, Cu and capric acid as phase change material (PCM) are considered. Different nanoparticles combinations (oxide–PCM, oxide–nitride, oxide–carbon nanotube and oxide–metal) in 50/50 volume ratio with water (base fluid) are taken as working fluids. The effects of volume flow rate (0.1–0.5 LPM) or Reynolds number (50 to 500) and total particle volume concentration (0.01–0.1%) are investigated. Convective heat transfer coefficient and pressure drop increase by about 42.3% and 22%, respectively, for Al2O3 + CNT nanofluid. The maximum reduction of 26.6% in thermal resistance is obtained for Al2O3 + CNT nanofluid as compared to base fluid. Heat transfer effectiveness and figure of merit are above one for all the hybrid nanofluids, which conclude that hybrid nanofluid is a better option over base fluid for minichannel heat sink. Al2O3 + CNT hybrid nanofluid is better in terms of heat transfer effectiveness, but Al2O3 + AlN hybrid nanofluid yields higher heat transfer coefficient to pressure drop ratio and coefficient of performance. The lower nanoparticle volume concentration in nanofluid is preferable due to higher stability, lower clogging and lower cost per cooling capacity of heat sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Effective heat transfer area (m2)

c p :

Specific heat (J kg−1 K−1)

d h :

Hydraulic diameter (mm)

f :

Friction factor (–)

P p :

Pumping power (W)

h :

Heat transfer coefficient (W m‒2 K−1)

h ch :

Channel height (mm)

k :

Thermal conductivity (W m‒1 K−1)

\(\dot{V}\) :

Volume flow rate (LPM)

ɛ :

Heat transfer effectiveness (–)

ɛ th :

Thermal effectiveness (–)

R th :

Thermal resistance (K W−1)

Nu:

Nusselt number (–)

Δp :

Pressure drop (Pa)

Pr:

Prandtl number (–)

\(\dot{Q}\) :

Heat transfer rate (W)

Re:

Reynolds number (–)

T :

Temperature (°C)

u :

Velocity (m s−1)

w ch :

Channel width (mm)

L ch :

Channel length (mm)

L :

Latent heat of fusion (kJ kg−1)

C p :

Unit cost ($ kWh−1)

µ :

Dynamic viscosity (Pa s)

ρ :

Density (kg m−3)

φ :

Volume concentration (–)

η :

Efficiency (–)

bf:

Base fluid

nf:

Nanofluid

ch:

Channel

in:

Inlet

out:

Outlet

s:

Surface

m:

Mean

CNT:

Carbon nanotube

FOM:

Figure of merit (–)

PEC:

Performance evaluation criteria (–)

COP:

Coefficient of performance (–)

PCM:

Phase change material (–)

References

  1. Ghani IA, Sidik NAC, Kamaruzaman N. Hydrothermal performance of microchannel heat sink: the effect of channel design. Int J Heat Mass Transf. 2017;107:21–44.

    Article  Google Scholar 

  2. Hung TC, Yan WM, Li WP. Analysis of heat transfer characteristics of double-layered microchannel heat sink. Int J Heat Mass Transf. 2012;55:3090–9.

    Article  Google Scholar 

  3. Dewan A, Mahanta P, Raju KS, Kumar PS. Review of passive heat transfer augmentation techniques. Proc Inst Mech Eng Part A J Power Energy. 2004;218:509–27.

    Article  CAS  Google Scholar 

  4. Mahian O, Bajestan EE, Poncet S. Nanofluid today. J Therm Anal Calorim. 2017;135:23–8.

    Article  Google Scholar 

  5. Shadloo MS, Mahian O. Recent advances in heat and mass transfer. J Therm Anal Calorim. 2019;135:1611–5.

    Article  Google Scholar 

  6. Yang L, Mao M, Huang J, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    Article  CAS  Google Scholar 

  7. Yang L, Ji W, Zhang Z, Jin X. Thermal conductivity enhancement of water by adding graphene nanosheets: consideration of particle loading and temperature effects. Int Commun Heat Mass Transf. 2019;109:104353.

    Article  CAS  Google Scholar 

  8. Yang L, Ji W, Huang J, Xu G. An updated review on the influential parameters on thermal conductivity of nano-fluids. J Mol Liq. 2019;296:111780.

    Article  CAS  Google Scholar 

  9. Ho CJ, Chang PC, Yan WM, Amani P. Thermal and hydrodynamic characteristics of divergent rectangular minichannel heat sinks. Int J Heat Mass Transf. 2018;122:264–74.

    Article  CAS  Google Scholar 

  10. Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sustain Energy Rev. 2018;82(3):3656–69.

    Article  CAS  Google Scholar 

  11. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  12. Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135:1145–59.

    Article  CAS  Google Scholar 

  13. Yang L, Huang J, Ji W, Mao M. Investigations of a new combined application of nanofluids in heat recovery and air purification. Powder Technol. 2019. https://doi.org/10.1016/j.powtec.2019.10.053.

    Article  Google Scholar 

  14. Babar H, Ali HM. Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J Mol Liq. 2019;281:598–633.

    Article  CAS  Google Scholar 

  15. Kumar V, Sarkar J. Research and development on composite nanofluids as next-generation heat transfer medium. J Therm Anal Calorim. 2019;137:1133–54.

    Article  CAS  Google Scholar 

  16. Hung TC, Yan WM, Wang XD, Chang CY. Heat transfer enhancement in microchannel heat sinks using nanofluids. Int J Heat Mass Transf. 2012;55:2559–70.

    Article  CAS  Google Scholar 

  17. Malvandi A, Zamani M, Hosseini SJ, Moshizi SA. Figure of merit for optimization of nanofluid flow in circular microchannel by adapting nanoparticle migration. Appl Therm Eng. 2017;118:328–38.

    Article  CAS  Google Scholar 

  18. Nakharintr L, Naphon P, Wiriyasart S. Effect of jet-plate spacing to jet diameter ratios on nanofluids heat transfer in a mini-channel heat sink. Int J Heat Mass Transf. 2018;116:352–61.

    Article  CAS  Google Scholar 

  19. Ho CJ, Liao JC, Li CH, Yan WM, Amani M. Experimental study of cooling performance of water-based alumina nanofluid in a minichannel heat sink with MEPCM layer embedded in its ceiling. Int Commun Heat Mass Transf. 2019;103:1–6.

    Article  CAS  Google Scholar 

  20. Liang G, Mudawar I. Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int J Heat Mass Transf. 2019;136:324–54.

    Article  CAS  Google Scholar 

  21. Yang L, Du K, Zhang Z. Heat transfer and flow optimization of a novel sinusoidal minitube filled with non-Newtonian SiC/EG-water nanofluids. Int J Mech Sci. 2020;168:105310.

    Article  Google Scholar 

  22. Selvakumar P, Suresh S. Use of Al2O3–Cu/water hybrid nanofluid in an electronic heat sink. IEEE Trans Compon Packag Manuf Technol. 2012;2:1600–7.

    Article  CAS  Google Scholar 

  23. Ho CJ, Chen WC, Yan WM. Experiment on thermal performance of water-based suspensionsof Al2O3 nanoparticles and MEPCM particles in a minichannel heat sink. Int J Heat Mass Transf. 2014;69:276–84.

    Article  CAS  Google Scholar 

  24. Ho CJ, Chen WC, Yan WM. Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3 nanoparticles and/or MEPCM particles. Int J Heat Mass Transf. 2014;69:293–9.

    Article  CAS  Google Scholar 

  25. Ahammed N, Asirvatham LG, Wongwises S. Entropy generation analysis of graphene–alumina hybrid nanofluid in multiport minichannel heat exchanger coupled with thermoelectric cooler. Int J Heat Mass Transf. 2016;103:1084–97.

    Article  CAS  Google Scholar 

  26. Nimmagadda R, Venkatasubbaiah K. Experimental and multiphase analysis of nanofluids on the conjugate performance of micro-channel at low Reynolds numbers. Heat Mass Transf. 2017;53:2099–115.

    Article  CAS  Google Scholar 

  27. Ho CJ, Chen WC, Yan WM, Amani P. Contribution of hybrid Al2O3-water nanofluid and PCM suspension to augment thermal performance of coolant in a minichannel heat sink. Int J Heat Mass Transf. 2018;122:651–9.

    Article  CAS  Google Scholar 

  28. Nimmagadda R, Venkatasubbaiah K. Two-phase analysis on the conjugate heat transfer performance of microchannel with Cu, Al, SWCNT, and hybrid nanofluids. J Therm Sci Eng Appl. 2017;9:041011.

    Article  Google Scholar 

  29. Bahiraei M, Berahmand M, Shahsavar A. Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Appl Therm Eng. 2017;125:1083–93.

    Article  CAS  Google Scholar 

  30. Mashayekhi R, Khodabandeh E, Akbari OA, Toghraie D, Bahiraei M, Gholami M. CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink. J Therm Anal Calorim. 2018;134:2305–15.

    Article  CAS  Google Scholar 

  31. Kumar V, Sarkar J. Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3-TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio. Powder Technol. 2019;345:717–27.

    Article  CAS  Google Scholar 

  32. Kumar V, Sarkar J. Experimental hydrothermal behavior of hybrid nanofluid for various particle ratios and comparison with other fluids in minichannel heat sink. Int Commun Heat Mass Transf. 2019;110:104397.

    Article  Google Scholar 

  33. Bhattad A, Sarkar J, Ghosh P. Hydrothermal performance of different alumina hybrid nanofluid types in plate heat exchanger: experimental study. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08682-y.

    Article  Google Scholar 

  34. Ho CJ, Chen WC. An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink. Appl Therm Eng. 2013;50:516–22.

    Article  CAS  Google Scholar 

  35. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3–8.

    Google Scholar 

  36. Kosar A. Exergo-economic analysis of micro pin fin heat sinks. Int J Energy Res. 2011;35:1004–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahar Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sarkar, J. Effect of different nanoparticle-dispersed nanofluids on hydrothermal-economic performance of minichannel heat sink. J Therm Anal Calorim 141, 1477–1488 (2020). https://doi.org/10.1007/s10973-019-09145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09145-0

Keywords

Navigation