Skip to main content
Log in

Correlation between the cross-linking and degradation activation energy of cotton fabric treated with chitosan kinetic study by ‘model-free’ multiple heating rate methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The different concentrations of chitosan were applied on cotton fabrics using glutaraldehyde as a cross-linking agent. The fabric samples were thermally analysed from ambient temperature to 700 °C at four different linear heating rates, i.e. 2.5, 5, 10 and 20 °C min−1 in a flowing nitrogen medium. Non-isothermal ‘model-free’ multiple heating rate methods like Friedman and Kissinger–Akahira–Sunose have been employed for the determination of degradation activation energy of the samples. The degradation mechanism based on activation energy calculation at different conversions has been proposed and compared with the extent of cross-linking. Also the method of universal master plots has been employed on isothermal data and worked on different models and their optimizations. This research work tries to achieve a correlation between activation energy and extent of cross-linking with the increase in chitosan concentration to the fabric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Montazer M, Afjeh MG. Simultaneous x-linking and antimicrobial finishing of cotton fabric. J Appl Polym Sci. 2007;103(1):178–85.

    Article  CAS  Google Scholar 

  2. Fei Liu X, Lin Guan Y, Zhi Yang D, Li Z, De Yao K. Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci. 2001;79(7):1324–35.

    Article  Google Scholar 

  3. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003;4(6):1457–65.

    Article  CAS  Google Scholar 

  4. Gupta D, Haile A. Multifunctional properties of cotton fabric treated with chitosan and carboxymethyl chitosan. Carbohydr Polym. 2007;69(1):164–71.

    Article  CAS  Google Scholar 

  5. Zhang Z, Chen L, Ji J, Huang Y, Chen D. Antibacterial properties of cotton fabrics treated with chitosan. Text Res J. 2003;73(12):1103–6.

    Article  CAS  Google Scholar 

  6. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AA, Vasconcelos WL, Mansur HS. Preparation and characterization of chitosan/poly (vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym. 2009;76(3):472–81.

    Article  Google Scholar 

  7. Lal S, Arora S, Sharma C. Synthesis, thermal and antimicrobial studies of some Schiff bases of chitosan. J Therm Anal Calorim. 2016;124(2):909–16.

    Article  CAS  Google Scholar 

  8. Cabrales L, Abidi N. On the thermal degradation of cellulose in cotton fibers. J Therm Anal Calorim. 2010;102(2):485–91.

    Article  CAS  Google Scholar 

  9. Hebeish A, Abdel-Mohdy F, Fouda MM, Elsaid Z, Essam S, Tammam GH, Drees EA. Green synthesis of easy care and antimicrobial cotton fabrics. Carbohydr Polym. 2011;86(4):1684–91.

    Article  CAS  Google Scholar 

  10. Fouda MM, El Shafei A, Sharaf S, Hebeish A. Microwave curing for producing cotton fabrics with easy care and antibacterial properties. Carbohydr Polym. 2009;77(3):651–5.

    Article  CAS  Google Scholar 

  11. Vyazovkin S. Model-free kinetics. J Therm Anal Calorim. 2006;83(1):45–51.

    Article  CAS  Google Scholar 

  12. Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics project—the light at the end of the tunnel. Thermochim Acta. 2000;355(1–2):155–63.

    Article  CAS  Google Scholar 

  13. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Polym Symp. 1964;61:183–95.

    Google Scholar 

  14. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  15. Akahira T, Akahira T, Trans ST. Joint convention of four electrical institutes paper no. 246, 1969 research report. Chiba Inst Technol Sci Technol. 1969;1971(16):22–31.

    Google Scholar 

  16. Grønli MG, Várhegyi G, Di Blasi C. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41(17):4201–8.

    Article  Google Scholar 

  17. Lal S, Arora S, Sharma S. Thermal, mechanical and biological studies of chitosan treated cotton fabric. Sci Techol Int Res J. 2014;1(1):49–58.

    Google Scholar 

  18. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I. Isothermal kinetic studies. Thermochim Acta. 2005;429(1):93–102.

    Article  CAS  Google Scholar 

  19. Coats AW, Redfern J. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  20. Criado JM, Pérez-Maqueda LA, Gotor FJ, Málek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72(3):901–6.

    Article  CAS  Google Scholar 

  21. Arora S, Bagoria R, Kumar M. Effect of alpha-tocopherol (vitamin E) on the thermal degradation behavior of edible oils. J Therm Anal Calorim. 2010;102(1):375–81.

    Article  CAS  Google Scholar 

  22. Pawlak A, Mucha M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim Acta. 2003;396:153–66.

    Article  CAS  Google Scholar 

  23. Arora S, Lal S, Kumar S, Kumar M, Kumar M. Comparative degradation kinetic studies of three biopolymers: chitin, chitosan and cellulose. Arch Appl Sci Res. 2011;3(3):188–201.

    CAS  Google Scholar 

  24. Flynn J. A general differential technique for the determination of parameters for d(α)/dt = f(α) A eE/RT. J Therm Anal. 1991;37(2):293–305.

    Article  CAS  Google Scholar 

  25. Dahiya JB, Kumar K, Muller-Hagedorn M, Bockhorn H. Kinetics of isothermal and non-isothermal degradation of cellulose: model-based and model-free methods. Polym Int. 2008;57(5):722–9.

    Article  CAS  Google Scholar 

  26. López FA, Mercê ALR, Alguacil FJ, López-Delgado A. A kinetic study on the thermal behaviour of chitosan. J Therm Anal Calorim. 2008;91(2):633–9.

    Article  Google Scholar 

  27. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM. Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A. 2010;114(30):7868–76.

    Article  Google Scholar 

  28. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Pascual-Cosp J, Benítez-Guerrero M, Criado JM. An improved model for the kinetic description of the thermal degradation of cellulose. Cellulose. 2011;18(6):1487–98.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, Sohan Lal is extremely thankful to the Council of Scientific and Industrial Research and University Grant Commission, New Delhi, India for providing the research grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohan Lal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, S., Arora, S., Kumar, V. et al. Correlation between the cross-linking and degradation activation energy of cotton fabric treated with chitosan kinetic study by ‘model-free’ multiple heating rate methods. J Therm Anal Calorim 143, 3267–3274 (2021). https://doi.org/10.1007/s10973-019-09136-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09136-1

Keywords

Navigation