Skip to main content
Log in

Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Here, peristaltic flow of Sisko material is modeled with variable characteristics of thermal conductivity and viscosity via curved configuration. Both are taken as space and temperature dependent. Conservation laws for mass, momentum and temperature are first modeled and then simplified by taking small wavelength and large Reynolds number assumptions. Entropy is also under consideration here to study the irregularities in heat transfer process. Here, series solution is developed for stream function, velocity and pressure gradient. Further, heat equation is solved numerically. These solutions are utilized to plot the behaviors of quantities of interest against the pertinent parameters. Graphical results determine that the velocity rises by larger viscosity parameter while temperature reduces. For larger thermal conductivity parameter, the temperature decays, whereas it increases for Sisko fluid parameter. Irregularity in heat transfer is found minimum through entropy generation for larger viscosity and thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

U :

Velocity vector

\(\left( {U_{1} ,\,U_{2} } \right)\) :

Velocity components

2a :

Width of curved channel

\((R,X)\) :

Radial and axial components

C :

Wave speed

b :

Wave amplitude

λ :

Wavelength

t :

Time

\(\left( {T_{0} ,\,T_{1} } \right)\) :

Temperature at upper and lower walls

\(\kappa (T)\) :

Variable thermal conductivity

ρ :

Fluid density

T :

Material temperature

\(C_{\text{p}}\) :

Specific heat

c and d :

Material parameters of Sisko fluid

\(\gamma^{ * }\) :

Sisko fluid parameter

\(\mu_{\text{o}}\) :

Constant fluid dynamic viscosity

\(\delta\) :

Wavenumber

\(\alpha^{\prime }\) :

Variable viscosity parameter

\(\beta^{\prime }\) :

Variable thermal conductivity parameter

\(\eta\) :

Channel walls in radial direction

J :

Current density

\(\sigma\) :

Electric conductivity

P :

Pressure

C :

Concentration

S :

Extra stress tensor

\(S_{\text{RR}} ,\,S_{\text{XR}} ,\,S_{\text{XX}}\) :

Stress components

\(\kappa_{0}\) :

Constant thermal conductivity at ambient temperature T0

\(\left( {\beta_{1}^{\prime } ,\,\beta_{2}^{\prime } } \right)\) :

Biot numbers

\(\psi\) :

Stream function

Re:

Reynolds number

Br:

Brinkman number

Pr:

Prandtl number

\(N_{\text{s}}\) :

Entropy generation parameter

\(S_{\text{G}}\) :

Entropy generation characteristic

\(\left( {S_{\text{gen}} } \right)_{\text{T}}\) :

Heat transfer irreversibility

\(\left( {S_{\text{gen}} } \right)_{\text{F}}\) :

Fluid friction irreversibility

\(\varLambda\) :

Temperature difference parameters

References

  1. Latham TW. Fluid motion in a peristaltic pump. M.S. Thesis. MIT Cambridge, MA. 1966.

  2. Shapiro AH, Jafrin MY, Weinberg SL. Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Article  Google Scholar 

  3. Akram S, Nadeem S. Influence of induced magnetic field and heat transfer on the peristaltic motion of a Jeffrey fluid in an asymmetric channel: closed form solutions. J Magn Mag Mater. 2013;328:11–20. https://doi.org/10.1016/j.jmmm.2012.09.052.

    Article  CAS  Google Scholar 

  4. Hayat T, Khan AA, Bibi F, Farooq S. Activation energy and non-Darcy resistance in magneto peristalsis of Jeffrey material. J Phys Chem Solids. 2019;129:155–61.

    Article  CAS  Google Scholar 

  5. Asghar S, Hussain Q, Hayat T, Alsaedi A. Peristaltic flow of a reactive viscous fluid through a porous saturated channel and convective cooling conditions. J Appl Mech Tech Phys. 2015;56(4):580–9.

    Article  CAS  Google Scholar 

  6. Reddy MG, Makinde OD. Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J Mol Liq. 2016;223:1242–8.

    Article  CAS  Google Scholar 

  7. Ali N, Sajid M, Javed T, Abbas Z. Heat transfer analysis of peristaltic flow in a curved channel. Int J Heat Mass Transf. 2010;53(15–16):3319–25.

    Article  CAS  Google Scholar 

  8. Hina S, Mustafa M, Hayat T, Alotaibi ND. On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl Math Comput. 2015;263:378–91.

    Google Scholar 

  9. Ali N, Javid K, Sajid M, Zaman A, Hayat T. Numerical simulations of Oldroyd 8-constant fluid flow and heat transfer in a curved channel. Int J Heat Mass Transf. 2016;94:500–8.

    Article  Google Scholar 

  10. Farooq S, Alsaedi A, Hayat T, Ahmad B. Peristaltic transport of Johnson–Segalman fluid with homogeneous-heterogeneous reactions: a numerical analysis. J Braz Soc Mech Sci Eng. 2018;40(5):240–2.

    Article  Google Scholar 

  11. Hayat T, Akram J, Zahir H, Alsaedi A. Peristaltic motion of Sisko fluid in an inclined asymmetric tapered channel with nonlinear radiation. J Therm Anal Calorim. 2019;138:545–58.

    Article  CAS  Google Scholar 

  12. Eldabe NT, El-Sayed MF, Ghaly AY, Sayed HM. Mixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosity. Arch Appl Mech. 2008;78:599–624.

    Article  Google Scholar 

  13. Tanveer A, Hayat T, Alsaedi A. Variable viscosity in peristalsis of Sisko fluid. Appl Math Mech. 2018;39:501–12.

    Article  Google Scholar 

  14. Hussain Q, Asghar S, Hayat T, Alsaedi A. Heat transfer analysis in peristaltic flow of MHD Jeffrey fluid with variable thermal conductivity. Appl Math Mech. 2015;36:499–516.

    Article  Google Scholar 

  15. Hayat T, Abbasi FM, Ahmad B, Alsaedi A. MHD mixed convection peristaltic flow with variable viscosity and thermal conductivity. Sains Malays. 2014;43:1583–90.

    Google Scholar 

  16. Bejan A. Second law analysis in heat transfer. Energy. 1980;5:720–32.

    Article  Google Scholar 

  17. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. Boca Raton: CRC Press; 2013.

    Book  Google Scholar 

  18. Chinyoka T, Makinde OD, Eegunjobi AS. Entropy analysis of unsteady magnetic flow through a porous pipe with buoyancy effects. J Porous Media. 2013;16:823–36.

    Article  Google Scholar 

  19. Revellin R, Lips S, Khandekar S, Bonjour J. Local entropy generation for saturated two-phase flow. Energy. 2009;34:1113–21.

    Article  CAS  Google Scholar 

  20. Torabi M, Zhang K, Yang G, Wang J, Wu P. Heat transfer and entropy generation analyses in a channel partially filled with porous media using local thermal non-equilibrium model. Energy. 2015;82:922–38.

    Article  Google Scholar 

  21. Kahraman A, Yürüsoy M. Entropy generation due to non-Newtonian fluid flow in annular pipe with relative rotation: constant viscosity case. J Theor Appl Mech. 2008;46(1):69–83.

    Google Scholar 

  22. Abbas M, Bai Y, Rashidi M, Bhatti M. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy. 2016;18(3):90. https://doi.org/10.3390/e18030090.

    Article  CAS  Google Scholar 

  23. Srinivasacharya D, Bindu KH. Entropy generation in a porous annulus due to micropolar fluid flow with slip and convective boundary conditions. Energy. 2016;111:165–77.

    Article  Google Scholar 

  24. Souidi F, Ayachi K, Benyahia N. Entropy generation rate for a peristaltic pump. J Non-Equilib Thermodyn. 2009;34:171–94.

    Article  Google Scholar 

  25. Akbar NS. Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy. 2015;82:23–30. https://doi.org/10.1016/j.energy.2014.12.034.

    Article  Google Scholar 

  26. Zahir H, Hayat T, Alsaedi A, Ahmad B. Entropy generation impact on peristaltic motion in a rotating frame. Res Phys. 2017;7:3668–77.

    Google Scholar 

  27. Sheikholeslami M, Arabkoohsar A, Jafaryar M. Impact of a helical-twisting device on the thermal–hydraulic performance of a nanofluid flow through a tube. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08683-x.

    Article  Google Scholar 

  28. Hayat T, Ahmed B, Abbasi FM, Alsaedi A. Numerical investigation for peristaltic flow of Carreau–Yasuda magneto-nanofluid with modified Darcy and radiation. J Therm Anal Calorim. 2019;137:1359–67.

    Article  CAS  Google Scholar 

  29. Nawaz S, Hayat T, Alsaedi A. Numerical study for peristalsis of Sisko nanomaterials with entropy generation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08546-5.

    Article  Google Scholar 

  30. Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Article  Google Scholar 

  31. Sheikholeslami M, Sheremet MA, Shafee A, Li Z. CVFEM approach for EHD flow of nanofluid us medium within a wavy chamber under the impacts of radiation and moving walls. J Therm Anal Calorim. 2019:1–9.

  32. Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08634-6.

    Article  Google Scholar 

  33. Sheikholeslami M, Vajravelu K. Nanofluid flow and heat transfer in a cavity with variable magnetic field. Appl Math Comput. 2017;298:272–82.

    Google Scholar 

  34. Sheikholeslami M, Shamlooei M. Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrogen Energy. 2017;42:5708–18.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  36. Hassanvand A. Shape impact of nanomaterial on MHD flow involving melting surface. Case Study Therm Eng. 2019;15:100507.

    Article  Google Scholar 

  37. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134:2295–303.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Jafaryar M, Hedayat M, Shafee A, Li Z, Nguyen TK, Bakouri M. Heat transfer and turbulent simulation of nanomaterial due to compound turbulator including irreversibility analysis. Int J Heat Mass Transf. 2019;137:1290–300.

    Article  CAS  Google Scholar 

  39. Farshad SA, Sheikholeslami M. Nanofluid flow inside a solar collector utilizing twisted tape considering exergy and entropy analysis. Renew Energy. 2019;141:246–58.

    Article  CAS  Google Scholar 

  40. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    Article  CAS  Google Scholar 

  41. Sheikholeslami M, Jafaryar M, Ali JA, Hamad SM, Divsalar A, Shafee A, Nguyen-Thoi T, Li Z. Simulation of turbulent flow of nanofluid due to existence of new effective turbulator involving entropy generation. J Mol Liq. 2019;291:111283.

    Article  CAS  Google Scholar 

  42. Hayat T, Farooq S, Ahmad B, Alsaedi A. Effectiveness of entropy generation and energy transfer on peristaltic flow of Jeffrey material with Darcy resistance. Int J Heat Mass Transf. 2017;106:244–52.

    Article  Google Scholar 

  43. Kay WM. Convective heat and mass transfer. New York City, NY: Mc-Graw Hill; 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhat Bibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bibi, F., Hayat, T., Farooq, S. et al. Entropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivity. J Therm Anal Calorim 143, 363–375 (2021). https://doi.org/10.1007/s10973-019-09125-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09125-4

Keywords

Navigation