Skip to main content
Log in

Peristaltic motion of Sisko fluid in an inclined asymmetric tapered channel with nonlinear radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Peristaltic pumping of Sisko fluid through the non-uniform asymmetric channel is addressed. Main motivations are given to nonlinear radiation and inclined magnetic field. The perturbation technique and lubrication approach are utilized for development of governing problems and solutions. Resulting equations are solved for velocity, temperature, pressure and stream function. Trapping phenomenon is also observed. Variation of pertinent parameters is plotted and illustrated physically. The larger inclination of the magnetic field leads to a rise in velocity. Moreover, the size of trapping bolus tends to reduce and finally disappears for the larger fluid parameter. To our knowledge, such attempt for linear radiation and without inclined magnetic field does not exist even for both symmetric and asymmetric channels. Further it should be noted that problem remains nonlinear even after utilizing long wavelength and low Reynolds number assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Reddy GK, Yarrakula K, Raju CSK, Rahbari A. Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J Therm Anal Calorim. 2018;132:1995–2002. https://doi.org/10.1007/s10973-018-7115-0.

    Article  CAS  Google Scholar 

  2. Hayat T, Khan MI, Farooq M, Alsaedi A, Khan MI. Thermally stratified stretching flow with Cattaneo–Christov heat flux. Int J Heat Mass Transf. 2017;106:289–94.

    Article  CAS  Google Scholar 

  3. Hayat T, Ullah I, Muhammad T, Alsaedi A. Magnetohydrodynamic (MHD) three-dimensional flow of second grade nanofluid by a convectively heated exponentially stretching surface. J Mol Liq. 2016;220:1004–12.

    Article  CAS  Google Scholar 

  4. Ellahi R, Aziz S, Zeeshan A. Non-Newtonian nanofluids flow through a porous medium between two coaxial cylinders with heat transfer and variable viscosity. J Porous Media. 2013;16:205–16.

    Article  Google Scholar 

  5. Waqas M, Hayat T, Farooq M, Shehzad SA, Alsaedi A. Cattaneo–Christov heat flux model for flow of variable thermal conductivity generalized Burgers fluid. J Mol Liq. 2016;220:642–8.

    Article  CAS  Google Scholar 

  6. Ali N, Zaman A, Sajid M. Unsteady blood flow through a tapered stenotic artery using Sisko model. Comput Fluids. 2014;101:42–9.

    Article  Google Scholar 

  7. Hayat T, Muhammad T, Shehzad SA, Alsaedi A. On three-dimensional boundary layer flow of Sisko nanofluid with magnetic field effects. Adv Powder Technol. 2016;27:504–12.

    Article  CAS  Google Scholar 

  8. Zaman A, Ali N, Bég OA. Numerical study of unsteady blood flow through a vessel using Sisko model. Eng Sci Technol Int J. 2016;19:538–47.

    Article  Google Scholar 

  9. Hayat T, Muhammad T, Ahmad B, Shehzad SA. Impact of magnetic field in three-dimensional flow of Sisko nanofluid with convective condition. J Magn Magn Mater. 2016;413:1–8.

    Article  CAS  Google Scholar 

  10. Hayat T, Zahir H, Tanveer A, Alsaedi A. Numerical study for MHD peristaltic flow in a rotating frame. Comput Bio Med. 2016;79:215–21.

    Article  CAS  Google Scholar 

  11. Ramesh K. Influence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channel. J Mol Liq. 2016;219:256–71.

    Article  CAS  Google Scholar 

  12. Hayat T, Farooq S, Ahmad B, Alsaedi A. Homogeneous-heterogeneous reactions and heat source/sink effects in MHD peristaltic flow of micropolar fluid with Newtonian heating in a curved channel. J Mol Liq. 2016;22:469–88.

    Article  Google Scholar 

  13. Hayat T, Rafiq M, Ahmad B. Influences of rotation and thermophoresis on MHD peristaltic transport of Jeffrey fluid with convective conditions and wall properties. J Magn Magn Mater. 2016;410:89–99.

    Article  CAS  Google Scholar 

  14. Hina S. MHD peristaltic transport of Eyring–Powell fluid with heat/mass transfer, wall properties and slip conditions. J Magn Magn Mater. 2016;404:148–58.

    Article  CAS  Google Scholar 

  15. Abbasi FM, Hayat T, Alsaedi A. Numerical analysis for MHD peristaltic transport of Carreau–Yasuda fluid in a curved channel with Hall effects. J Magn Magn Mater. 2015;382:104–10.

    Article  CAS  Google Scholar 

  16. Sarlak R, Yousefzadeh S, Akbari OA, Toghraie D, Assadi F. The investigation of simultaneous heat transfer of water/Al\(_2\)O\(_3\) nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Article  Google Scholar 

  17. Reddy MG, Makinde OD. Magnetohydrodynamic peristaltic transport of Jeffrey nanofluid in an asymmetric channel. J Mol Liq. 2016;223:1242–8.

    Article  CAS  Google Scholar 

  18. Latif T, Alvi N, Hussain Q, Asghar S. Variable properties of MHD third order fluid with peristalsis. Results Phys. 2016;6:963–72.

    Article  Google Scholar 

  19. Hayat T, Shafique M, Tanveer A, Alsaedi A. Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel. Int J Heat Mass Transf. 2016;102:54–63.

    Article  CAS  Google Scholar 

  20. Muthuraj R, Nirmala K, Srinivas S. Influences of chemical reaction and wall properties on MHD peristaltic transport of a Dusty fluid with heat and mass transfer. Alex Eng J. 2016;55:597–611.

    Article  Google Scholar 

  21. Machireddy GR, Kattamreddy VR. Impact of velocity slip and Joule heating on MHD peristaltic flow through a porous medium with chemical reaction. J Niger Math Soc. 2016;35:227–44.

    Article  Google Scholar 

  22. Abd-Alla AM, Abo-Dahab SM. Magnetic field and rotation effects on peristaltic transport of a Jeffrey fluid in an asymmetric channel. J Magn Magn Mater. 2015;374:680–9.

    Article  CAS  Google Scholar 

  23. Hayat T, Hina S. The influence of wall properties on the MHD peristaltic flow of Maxwell fluid with heat transfer. Nonlinear Anal Real World Appl. 2010;11:3155–9.

    Article  CAS  Google Scholar 

  24. Hayat T, Nisar Z, Ahmad B, Yasmin H. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating. J Magn Magn Mater. 2015;395:48–58.

    Article  CAS  Google Scholar 

  25. Hayat T, Bibi S, Rafiq M, Alsaedi A, Abbasi FM. Effects of an inclined magnetic field on peristaltic flow of Williamson fluid in an inclined channel with convective conditions. J Magn Magn Mater. 2016;401:733–45.

    Article  CAS  Google Scholar 

  26. Ellahi R, Shivanian E, Abbasbandy S, Hayat T. Numerical study of magnetohydrodynamics generalized Couette flow of Eyring–Powell fluid with heat transfer and slip condition. Int J Numer Methods Heat Fluid Flow. 2016;26:1433–45.

    Article  Google Scholar 

  27. Ramesh K, Devakar M. Magnetohydrodynamic peristaltic transport of couple stress fluid through porous medium in an inclined asymmetric channel with heat transfer. J Magn Magn Mater. 2015;394:335–48.

    Article  CAS  Google Scholar 

  28. Hayat T, Nisar Z, Yasmin H, Alsaedi A. Peristaltic transport of nanofluid in a compliant wall channel with convective conditions and thermal radiation. J Mol Liq. 2016;220:448–53.

    Article  CAS  Google Scholar 

  29. Shamsi MR, Akbari OA, Marzban A, Toghraie D, Mashayekhi R. Increasing heat transfer of non-Newtonian nanofluid in rectangular microchannel with triangular ribs. Physica E. 2017;93:167–78.

    Article  CAS  Google Scholar 

  30. Pourfattah F, Motamedian M, Sheikhzadeh G, Toghraie D, Akbari OA. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water-Al\(_2\)O\(_3\) nanofluid in a tube. Int J Mech Sci. 2017;131–132:1106–16.

    Article  Google Scholar 

  31. Hayat T, Quratulain, Alsaedi A, Rafiq M, Ahmad B. Joule heating and thermal radiation effects on peristalsis in curved configuration. Results Phys. 2016;6:1088–95.

    Article  Google Scholar 

  32. Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol. 2018;325:78–91.

    Article  CAS  Google Scholar 

  33. Hayat T, Rashid M, Imtiaz M, Alsaedi A. MHD convective flow due to a curved surface with thermal radiation and chemical reaction. J Mol Liq. 2017;225:482–9.

    Article  CAS  Google Scholar 

  34. Akbari OA, Toghraie D, Karimipour A, Marzban A, Ahmadi GR. The effect of velocity and dimension of solid nanoparticles on heat transfer in non-Newtonian nanofluid. Physica E. 2017;86:68–75.

    Article  CAS  Google Scholar 

  35. Hayat T, Qayyum S, Alsaedi A, Waqas M. Simultaneous influences of mixed convection and nonlinear thermal radiation in stagnation point flow of Oldroyd-B fluid towards an unsteady convectively heated stretched surface. J Mol Liq. 2016;224:811–7.

    Article  CAS  Google Scholar 

  36. Ibrahim W. Non-linear radiative heat transfer in magnetohydrodynamic (MHD) stagnation point flow of nanofluid past a stretching sheet with convective boundary condition. Propues Power Res. 2015;4:230–9.

    Article  Google Scholar 

  37. Hayat T, Muhammad T, Alsaedi A, Alhuthali MS. Magnetohydrodynamic three-dimensional flow of viscoelastic nanofluid in the presence of non-linear thermal radiatio. J Magn Magn Mater. 2015;385:222–9.

    Article  CAS  Google Scholar 

  38. Mahatha BK, Nandkeolyar R, Nagaraju G, Das M. MHD stagnation point flow of a nanofluid with velocity slip, non-linear radiation and Newtonian heating. Procedia Eng. 2015;127:1010–7.

    Article  Google Scholar 

  39. Hayat T, Imtiaz M, Alsaedi A, Kutbi MA. MHD three-dimensional flow of nanofluid with velocity slip and non-linear thermal radiation. J Magn Magn Mater. 2015;396:31–7.

    Article  CAS  Google Scholar 

  40. Mehmood OU, Fetecau C. A note on radiative heat transfer to peristaltic flow of Sisko fluid. Appl Bionics Biomech. 2015;2015:9–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hina Zahir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Akram, J., Zahir, H. et al. Peristaltic motion of Sisko fluid in an inclined asymmetric tapered channel with nonlinear radiation. J Therm Anal Calorim 138, 545–558 (2019). https://doi.org/10.1007/s10973-019-08088-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08088-w

Keywords

Navigation