Skip to main content
Log in

Evaluation of thermal properties of zirconium–PHB composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Most of the synthetic polymers that are used for packaging industry come from fossil fuel; thus, when their life cycle is complete, they normally accumulate in the environment. The poly(3-hydroxybutyrate) is a biopolymer produced from bacteria; due to its microbial degradation, great attention has been paid to its research; nevertheless, it has been found to be necessary to improve its mechanical, thermal and barrier properties. One of the approaches to do so is the incorporation of inorganic compounds. Zirconium oxide (ZrO2) and zirconium hydroxide (Zr(OH)4) have outstanding thermal stability and are potential compounds for the improvement in PHB features. Along this study, hybrid films made of PHB with 0.01, 0.05 and 0.1 mass% of ZrO2 and Zr(OH)4 were produced; their properties were evaluated by TG and DSC, which permitted to observe that all the composites have improved thermal resistance; furthermore, 0.01 and 0.05% Zr(OH)4 showed lower Wc. These results suggest that zirconium-based PHB composites can increase the process temperature range, which opens the new door to future applications on food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vandewijngaarden J, Wauters R, Murariu M, Dubois P, Carleer R, Yperman J, D’Haen J, Ruttens B, Schreurs S, Lepot N, Peeters R, Buntinx M. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/organomodified montmorillonite nanocomposites for potential food packaging applications. J Polym Environ. 2016;24:104–18.

    Article  CAS  Google Scholar 

  2. Pan Y, Farahani-Farmahini M, O’Hearn P, Xiao H, Ocampo H. An overview of bio-based polymers for packaging materials. J Bioresour Bioprod. 2016;1:106–13.

    Google Scholar 

  3. Ajum A, Zuber M, Zia KM, Noreen A, Ajun MN, Tabasum S. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int J Biol Macromol. 2016;89:161–74.

    Article  Google Scholar 

  4. Silverman T, Naffakh M, Marco C, Ellis G. Morphology and thermal properties of biodegradable poly(hydroxybutyrate-co-hydroxyvalerate)/tungsten disulphide inorganic nanotube nanocomposites. Mater Chem Phys. 2016;170:145–53.

    Article  CAS  Google Scholar 

  5. Kamboj M. Degradation of plastics for clean environment. Int J Adv Eng Appl Sci. 2016;5:10–9.

    Google Scholar 

  6. Bhat R, Abdullah N, Din R, Tay GS. Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm clack liquor waste. J Food Eng. 2013;119:707–13.

    Article  CAS  Google Scholar 

  7. Valdés A, Mellinas AC, Ramos M, Garrigós MC, Jiménez A. Natural additives and agricultural wastes in biopolymer formulations for food packaging. Front Chem. 2014;2:2–6.

    Article  Google Scholar 

  8. Othman SH. Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia. 2014;2:296–303.

    Google Scholar 

  9. Iwata T. Biodegradable and bio-based polymers: future prospect of eco-friendly plastics. Angew Chem Int. 2015;54:2–8.

    Article  Google Scholar 

  10. Pawar PA, Purwar AH. Biodegradable polymers in food packaging. Am J Eng Res. 2013;2:151–64.

    Google Scholar 

  11. Alvarez V, Bugnicourt E, Cinelli P. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett. 2014;8:791–808.

    Article  Google Scholar 

  12. Otsuka T, Chujo Y. Poly(methyl methacrylate) (PMMA)-based hybrid materials with reactive zirconium oxide nanocrystals. Polym J. 2010;42:58–65.

    Article  CAS  Google Scholar 

  13. Huang C, Tang Z, Zhang Z. Differences between zirconium hydroxide (Zr(OH)4·nH2O) and hydrous zirconia (ZrO2·nH2O). J Am Ceram Soc. 2001;84:1637–8.

    Article  CAS  Google Scholar 

  14. Chandra N, Singh DK, Sharma M, Upadhyay KR, Amrithale SS, Sanghi SK. Synthesis and characterization of nano-sized zirconia powder synthesized by single emulsion-assisted direct precipitation. J Colloid Interface Sci. 2010;342:327–32.

    Article  CAS  Google Scholar 

  15. Swain SK, Prusty G, Jena I. Condutive, gas barrier and thermal resistant behavior of poly(methyl methacrylate) composite by dispersion of ZrO2 nanoparticles. Int J Polym Mater Polym Biomater. 2013;62:733–6.

    Article  CAS  Google Scholar 

  16. Akinci A, Sen S, Sen U. Friction and wear behavior of zirconium oxide reinforced PMMA composites. Compos B. 2014;56:42–7.

    Article  CAS  Google Scholar 

  17. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandini M, Zoia L. Effect of ligno-derivatives on thermal properties and degradation behavior of poly(3-hydroxybutyrate)-based biocomposites. Polym Degrad Stab. 2012;97:1979–87.

    Article  CAS  Google Scholar 

  18. Iulianelli GCV, David GS, Santos TN, Sebastião PJO, Tavares MIB. Influence of TiO2 nanoparticle on the thermal, morphological and molecular characteristics of PHB matrix. Polym Test. 2018;65:156–62.

    Article  CAS  Google Scholar 

  19. Auriemma M, Piscitella A, Pasquino R, Cerruti P, Malinconico M, Grizzuti N. Blending poly(3-hydroxybutyrate) with tannic acid: influence of a polyphenolic natural additive on the rheological and thermal behavior. Eur Polym J. 2015;63:123–31.

    Article  CAS  Google Scholar 

  20. Hong GS, Gau TK, Huang SC. Enhancement of the crystallization and thermal stability of polyhydroxybutyrate by polymeric additives. J Therm Anal Calorim. 2011;103:967–75.

    Article  CAS  Google Scholar 

  21. Sato H, Khasanah, Reddy KR, Takahashi I, Ozaki Y. Intermolecular hydrogen bondings in the poly(3-hydroxybutyrate) and chitin blends: their effects on the crystallization behavior and crystal structure of poly(3-hydroxybutyrate). Polymer. 2015;75:141–50.

    Article  Google Scholar 

  22. Miranda KAG, Rivas BL, Pérez MA. Poly(3-hydroxybutyrate)–thermoplastic starch–organoclay bionanocomposites: surface properties. J Appl Polym Sci. 2017;134:1–8.

    Google Scholar 

  23. Wellen RMR, Rebello M, Fechine JM, Canedo EL. The melting behaviour of poly(3-hydroxybutyrate) by DSC. Reproducibility study. Polym Test. 2013;32:215–20.

    Article  CAS  Google Scholar 

  24. Yeo YS, Tan WL, Bakar Abu M, Ismail J. Silver sulfide/poly(3-hydroxybutyrate) nanocomposites: thermal stability and kinetic analysis of thermal degradation. Polym Degrad Stab. 2010;95:1299–304.

    Article  CAS  Google Scholar 

  25. Silva IDS, Jaques NG, Neto MCB, Agrawal P, Ries A, Wellen RMR, Canedo EL. Melting and crystallization of PHB/ZnO compounds. Effect of heating and cooling cycles on phase transition. J Therm Anal Calorim. 2018;132:571–80.

    Article  Google Scholar 

  26. Wang H, Xu P, Zhong W, Shen L, Du Q. Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polym Degrad Stab. 2005;87:319–27.

    Article  CAS  Google Scholar 

  27. Xiang H, Li L, Wang S, Wang R, Cheng Y, Zhou Z, Zhu M. Natural polyphenol tannic acid reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films with enhanced tensile strength and fracture toughness. Polym Compos. 2015;36(12):2302–8.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior (CAPES) (Grant No. 031-2012) and Finance Code 001 and FAPERJ (Grant No. E-26/203.294/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Inês B. Tavares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, D.C.P., de Menezes, L.R., da Silva, P.S.R.C. et al. Evaluation of thermal properties of zirconium–PHB composites. J Therm Anal Calorim 143, 165–172 (2021). https://doi.org/10.1007/s10973-019-09106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09106-7

Keywords

Navigation