Skip to main content
Log in

Elucidation of the solidification sequence of a complex graphitic HSS alloy under a combined approach of DTA and EBSD analyses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, a complex graphitic high-speed steel (Gr-HSS) obtained from a spin-casting process that allows high cooling rates during solidification is considered. Differential thermal analysis is carried out at a moderate and constant heating scan speed until complete remelting. This allows linking each of the peaks observed in the DTA curve to a related phase transformation that had occurred during the initial solidification in the spin-casting process. The phases that were formed during the spin-casting process, especially solidification carbides, are characterized through light microscopy (distribution) and scanning electron microscopy (morphology) either associated with EDS (chemical composition) or associated with EBSD (crystal lattice identification). A discussion is opened about the influence of solidification rates on both supersaturation and lattice distortions in the solidification carbides. The combination of reverse DTA and SEM/EDS–EBSD applied here to the complex Gr-HSS alloy constitutes a relevant approach to understand the phase transformations during complex casting processes where relatively high solidification rates are achieved.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lecomte-Beckers J, Tchuindjang JT. Structural investigations of solidification and heat treatments influence on high alloyed cast irons grades with Nb–V–Ti additions. Defect Diffus Forum Ser. 2009;289–292:77–86.

    Article  Google Scholar 

  2. Cole GS. Inhomogeneities and their control via solidification. Metall Trans. 1971;2:357–70.

    Article  CAS  Google Scholar 

  3. Hashimoto M, Kubo O, Matsubara Y. Analysis of carbides in multi-component white cast iron for hot rolling mill rolls. ISIJ Int. 2004;44:372–80.

    Article  CAS  Google Scholar 

  4. Chen L, Pei J, Li F, Zhang Y, Wang M, Ma X. Decomposition reaction of metastable M2C carbide in a multi-component semi-high-speed steel. Metall Mater Trans A Phys Metall Mater Sci. 2016;47:5662–9.

    Article  CAS  Google Scholar 

  5. Lecomte-Beckers J, Sinnaeve M, Tchuindjang JT. Current developments of alloyed steels for hot strip roughing mills—characterization of high chromium steel ans semi high speed steel. Iron Steel Technol. 2012;9:33–40.

    CAS  Google Scholar 

  6. Boccalini M, Goldenstein H. Solidification of high speed steels. Int Mater Rev. 2001;46:92–115.

    Article  CAS  Google Scholar 

  7. Fischmeister HF, Riedl R, Karagöz S. Solidification of high-speed tool steels. Metall Trans A. 1989;20:2133–48.

    Article  Google Scholar 

  8. Ding P, Shi G, Zhou S. As-cast carbides in high-speed steels. Metall Trans A. 1993;24:1265–72.

    Article  Google Scholar 

  9. Luan Y, Song N, Bai Y, Kang X, Li D. Effect of solidification rate on the morphology and distribution of eutectic carbides in centrifugal casting high-speed steel rolls. J Mater Process Technol. 2010;210:536–41.

    Article  CAS  Google Scholar 

  10. Coronado JJ, Sinatora A. Abrasive wear study of white cast iron with different solidification rates. Wear. 2009;267:2116–21.

    Article  CAS  Google Scholar 

  11. Delaunois F, Stanciu VI, Sinnaeve M. Resistance to high-temperature oxidation and wear of various ferrous alloys used in rolling mills. Metall Mater Trans A. 2018;49:822–35. https://doi.org/10.1007/s11661-017-4450-x.

    Article  CAS  Google Scholar 

  12. Tchoufang Tchuindjang J, Lecomte-Beckers J. Study of the origin of the unexpected pearlite during the cooling stage of two cast high-speed steels. Solid State Phenom. 2011;172–174:803–8.

    Article  Google Scholar 

  13. Tchuindjang JT, Torres IN, Flores P, Habraken AM, Lecomte-beckers J. Phase transformations and crack initiation in a high-chromium cast steel under hot compression tests. J Mater Eng Perform. 2015;24:2025–41.

    Article  CAS  Google Scholar 

  14. Luan YK, Song NN, Kang XH, Lee DZ. A study of the carbides in high-speed steel rolls. Mater Sci Forum. 2010;638–642:3356–61.

    Article  Google Scholar 

  15. Guo J, Liu L, Feng Y, Liu S, Ren X, Yang Q. Crystallographic characterizations of eutectic and secondary carbides in a Fe–12Cr–2.5Mo–1.5W–3V–1.25C alloy. Met Mater Int. 2017;23:313–9.

    Article  CAS  Google Scholar 

  16. Trepczyńska-Łent M. XRD and EBSD measurements of directional solidification Fe–C eutectic alloy. Arch Foundry Eng. 2016;16:169–74.

    Article  Google Scholar 

  17. Hwang KC, Lee S, Lee HC. Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: part I: microstructural analysis. Mater Sci Eng A. 1998;254:282–95.

    Article  Google Scholar 

  18. Wieczerzak K, Bala P, Stepien M, Cios G, Koziel T. Formation of eutectic carbides in Fe–Cr–Mo–alloy during non-equilibrium crystallization. Mater Des. 2016;94:61–8. https://doi.org/10.1016/j.matdes.2016.01.028.

    Article  CAS  Google Scholar 

  19. Imurai S, Thanachayanont C, Pearce JTH, Tsuda K, Chairuangsri T. Effects of Mo on microstructure of as-cast 28 wt% Cr–2.6 wt% C-(0–10) wt% Mo irons. Mater Charact. 2014;90:99–112. https://doi.org/10.1016/j.matchar.2014.01.014.

    Article  CAS  Google Scholar 

  20. Ghaderi AR, Nili Ahmadabadi M, Ghasemi HM. Effect of graphite morphologies on the tribological behavior of austempered cast iron. Wear. 2003;255:410–6.

    Article  CAS  Google Scholar 

  21. Villanueva Bravo S, Yamamoto K, Miyahara H, Ogi K, Bravo SV, Yamamoto K, et al. Control of carbides and graphite in Ni-hard type cast iron for hot strip mills. Mater Sci Forum. 2007;561–565:1023–6.

    Article  Google Scholar 

  22. Zhou XF, Fang F, Li F, Jiang JQ. Morphology and microstructure of M2C carbide formed at different cooling rates in AISI M2 high speed steel. J Mater Sci. 2011;46:1196–202.

    Article  CAS  Google Scholar 

  23. Bleckmann M, Gleinig J, Hufenbach J, Wendrock H, Giebeler L, Zeisig J, et al. Effect of cooling rate on the microstructure and properties of FeCrVC. J Alloys Compd. 2015;634:200–7. https://doi.org/10.1016/j.jallcom.2015.02.004.

    Article  CAS  Google Scholar 

  24. Villanueva Bravo S, Yamamoto K, Miyahara H, Ogi K. Control of carbides and graphite in cast irons type alloy’s microstructures for hot strip mills. J Metall. 2012;2012:1–6.

    Article  Google Scholar 

  25. Yamamoto K, Kubota T, Murai N, Ogi N. Solidification process and crystallization of graphite in high carbon high speed steel type alloy. J Japan Foundry Eng Soc. 1998;70:786–92.

    Google Scholar 

  26. Barkalow RH, Kraft RW, Goldstein JI. Solidification of M2 high speed steel. Metall Trans. 1972;3:919–26.

    Article  CAS  Google Scholar 

  27. Pietrowski S, Gumienny G. Microsegregation in nodular cast iron with carbides. Arch Foundry Eng. 2012;12:127–34.

    Article  CAS  Google Scholar 

  28. Rashidi MM, Idris MH. The effects of solidification on the microstructure and mechanical properties of modified ductile Ni-resist iron with a high manganese content. Mater Sci Eng A. 2014;597:395–407. https://doi.org/10.1016/j.msea.2013.12.070.

    Article  CAS  Google Scholar 

  29. Klančnik U, Habjan J, Klančnik G, Medved J. Thermal analysis of indefinite chill cast iron modified with ferrovanadium and ferrotungsten. J Therm Anal Calorim. 2017;127:1–8.

    Article  Google Scholar 

  30. Guo E, Wang L, Feng Y, Wang L, Chen Y. Effect of cooling rate on the microstructure and solidification parameters of Mg–3Al–3Nd alloy. J Therm Anal Calorim. 2019;135:2001–8. https://doi.org/10.1007/s10973-018-7446-x.

    Article  CAS  Google Scholar 

  31. Drozdová Ľ, Smetana B, Zlá S, Novák V, Kawuloková M, Rosypalová S, et al. Study of phase transformation temperatures of alloys based on Fe–C–Cr in high-temperature area. J Therm Anal Calorim. 2018;133:41–8. https://doi.org/10.1007/s10973-018-7012-6.

    Article  CAS  Google Scholar 

  32. Gajavalli K, Mikaelian G, Barrachin M, Decreton A, Fischer E, Rogez J, et al. Interrupted heating DTA for liquidus temperature determination of Ag–Cd–In alloys. J Therm Anal Calorim. 2019;135:2209–19. https://doi.org/10.1007/s10973-018-7442-1.

    Article  CAS  Google Scholar 

  33. Roca AS, Fals HDC, Zoqui EJ. In situ differential thermal analysis device for evaluating high-speed phase transitions. J Therm Anal Calorim. 2018;134:1589–97. https://doi.org/10.1007/s10973-018-7629-5.

    Article  CAS  Google Scholar 

  34. Steiner Petrovič D, Klančnik G, Pirnat M, Medved J. Differential scanning calorimetry study of the solidification sequence of austenitic stainless steel. J Therm Anal Calorim. 2011;105:251–7.

    Article  Google Scholar 

  35. Mostafapoor S, Malekan M, Emamy M. Effects of Zr addition on solidification characteristics of Al–Zn–Mg–Cu alloy using thermal analysis. J Therm Anal Calorim. 2018;134:1457–69. https://doi.org/10.1007/s10973-018-7426-1.

    Article  CAS  Google Scholar 

  36. Boettinger WJ, Kattner UR, Moon K-W, Perepezko JH. Dta and heat-flux DSC measurements of alloy melting and freezing. In: Methods for phase diagram determination. Elsevier Science Ltd; 2007. p. 151–221.

  37. Boccalini M Jr, Corrêa AVO, Goldenstein H. Rare earth metal induced modification of γ-M2C, γ-M6C, and γ-MC eutectics in as cast M2 high speed steel. Mater Sci Technol. 1999;15:621–6.

    Article  CAS  Google Scholar 

  38. Jabłońska M, Maciąg T, Nowak M, Rzychoń T, Czerny M, Kowalczyk K. Thermal and structural analysis of high-tin bronze of chemical composition corresponding to the composition of the singing bowl. J Therm Anal Calorim. 2019;137:735–41. https://doi.org/10.1007/s10973-019-08015-z.

    Article  CAS  Google Scholar 

  39. Król M, Staszuk M, Mikuszewski T, Kuc D. Refinement effect of RE in light weight Mg–Li–Al alloys. J Therm Anal Calorim. 2018;134:333–41. https://doi.org/10.1007/s10973-018-7290-z.

    Article  CAS  Google Scholar 

  40. Sinatora A, Albertin E, Matsubara Y. An investigation of the transition from M7C3 to M3C carbides in white cast irons. Int J Cast Met Res. 1996;9:9–15.

    Article  CAS  Google Scholar 

  41. Lentz J, Röttger A, Theisen W. Solidification and phase formation of alloys in the hypoeutectic region of the Fe-C-B system. Acta Mater. 2015;99:119–29. https://doi.org/10.1016/j.actamat.2015.07.037.

    Article  CAS  Google Scholar 

  42. Paar A, Elizondo L, Brandner M, Trickl T, Sonderegger B, Beal C, et al. Application of thermo-calc TCFE7 to high-alloyed mottled cast iron. Mater Sci Forum. 2016;879:1431–6.

    Article  Google Scholar 

  43. Laigo J, Christien F, Le Gall R, Tancret F, Furtado J. SEM, EDS, EPMA-WDS and EBSD characterization of carbides in HP type heat resistant alloys. Mater Charact. 2008;59:1580–6.

    Article  CAS  Google Scholar 

  44. Rivera G, Calvillo PR, Boeri R, Houbaert Y, Sikora J. Examination of the solidification macrostructure of spheroidal and flake graphite cast irons using DAAS and ESBD. Mater Charact. 2008;59:1342–8.

    Article  CAS  Google Scholar 

  45. Filipovic M, Kamberovic Z, Korac M, Gavrilovski M. Microstructure and mechanical properties of Fe–Cr–C–Nb white cast irons. Mater Des. 2013;47:41–8. https://doi.org/10.1016/j.matdes.2012.12.034.

    Article  CAS  Google Scholar 

  46. Godec M, Batič BŠ, Mandrino D, Nagode A, Leskovšek V, Škapin SD, et al. Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel. Mater Charact. 2010;61:452–8.

    Article  CAS  Google Scholar 

  47. García De Andrés C, Caballero FG, Capdevila C, Álvarez LF. Application of dilatometric analysis to the study of solid-solid phase transformations in steels. Mater Charact. 2002;48:101–11.

    Article  Google Scholar 

  48. Hayoune A, Hamana D. Structural evolution during non-isothermal ageing of a dilute Al–Cu alloy by dilatometric analysis. J Alloys Compd. 2009;474:118–23.

    Article  CAS  Google Scholar 

  49. Ceipidor UB, Brizzi E, Bucci R, Magrí AD. Using thermoanalytical data. Part 7. DSC/DTA/DTG peak shapes depending on operational settings, equipment features, sample kinetic and thermodynamic parameters. Thermochim Acta. 1994;247:347–56.

    Article  Google Scholar 

  50. Moukhina E, Kaisersberger E. Temperature dependence of the time constants for deconvolution of heat flow curves. Thermochim Acta. 2009;492:101–9.

    Article  CAS  Google Scholar 

  51. Jiang L, Zhang W-ZZ, Xu Z-FF, Huang H-FF, Ye X-XX, Leng B, et al. M2C and M6C carbide precipitation in Ni–Mo–Cr based superalloys containing silicon. Mater Des. 2016;112:300–8.

    Article  CAS  Google Scholar 

  52. Wright SI, Nowell MM. EBSD image quality mapping. Microsc Microanal. 2006;12:72–84.

    Article  CAS  Google Scholar 

  53. Keller LP. A transmission electron microscope study of iron-nickel carbides in the matrix of the Semarkona unequilibrated ordinary chondrite. Meteorit Planet Sci. 1998;33:913–9.

    Article  CAS  Google Scholar 

  54. Li XW, Wang L, Dong JS, Lou LH. Effect of solidification condition and carbon content on the morphology of MC carbide in directionally solidified nickel-base superalloys. J Mater Sci Technol. 2014;30:1296–300.

    Article  CAS  Google Scholar 

  55. Velikanova TA, Karpets MV, Artyukh SU, Balanetskii SO, Petyukh VM, Agraval PG, et al. Projection of the solidus surface of the Fe–Mo–C system in the composition range 0–40 at.% C. Powder Metall Met Ceram. 2011;50:1–10.

    Article  Google Scholar 

  56. Jiang L, Ye XX, Wang ZQ, Yu C, Dong JS, Xie RB, et al. The critical role of Si doping in enhancing the stability of M6C carbides. J Alloys Compd. 2017;728:917–26. https://doi.org/10.1016/j.jallcom.2017.09.042.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the CAREM of the ULiège for providing SEM/EDS/EBSD facilities. They also wish to kindly thank the retired professor Jacqueline Lecomte-Beckers for all the chances and the inspiration that she offered to the MMS unit.

Funding

This work has been supported by the Service Public de Wallonie (ENDEFINU project—Grant Number 6929).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Tchoufang Tchuindjang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurizi Enrici, T., Mertens, A., Sinnaeve, M. et al. Elucidation of the solidification sequence of a complex graphitic HSS alloy under a combined approach of DTA and EBSD analyses. J Therm Anal Calorim 141, 1075–1089 (2020). https://doi.org/10.1007/s10973-019-09093-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09093-9

Keywords

Navigation