Skip to main content
Log in

Optimum location and influence of tilt angle on performance of solar PV panels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

With the growing demand of economically feasible, clean, and renewable energy, the use of solar photovoltaic (PV) systems is increasing. The PV panel performance to generate electrical energy depends on many factors among which tilt angle is also a crucial one. Among hundreds of research work performed pertinent to solar PV panels performance, this work critically reviews the role of tilt angles and particularly locating the optimum tilt angle using different methods. The past data collected for analysis can be categorized mainly into mathematical model based, experimental based, simulation based, or combination of any of these. Single-axis tracking, dual-axis tracking, simple glass cover, hydrophobic glass cover, soiled glass, clean glass, partial shadow, use of phase-change material, computational fluid dynamic analysis, etc., are the novel methods found in the literature for analysis and locating the optimum tilt angle. For illustration purpose, few figures are provided in which the optimum tilt angle obtained on monthly, seasonally, and annual basis is shown. Research works are growing in the field of computations and simulations using online software and codes. Pure mathematical-based calculations are also reported but the trend is to combine this method with the simulation method. As the PV panel performance is found to be affected by number of parameters, their consideration in any single study is not reported. In future, work is required to carry out the experiment or simulation considering the effect of soiling, glass material, temperature, and surrounding ambience on the location of optimum tilt angle. As a whole, the optimum tilt angles reported for locations exactly on the equator line, i.e., 0° latitude, ranges between − 2.5° and 2.5°, for locations just above the equator line, i.e., latitude 2.6°–30° N ranges between 5° and 28°, for 40°–70° N, it is 29°–40°, and for 71°–90° N, it is 41°–45°. For locations at 2.6°–30° S, optimum tilt angles range between − 4° and − 32°, 30°–46° S, it is − 33° to − 36°, 47°–65° S, it is − 34° to − 50°, and for 66°–90° S it is − 51° to − 62°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Hachicha AA, Al-Sawafta I, Said Z. Impact of dust on the performance of solar photovoltaic (PV) systems under United Arab Emirates weather conditions. Renew Energy. 2019;141:287–97.

    Article  Google Scholar 

  2. Afzal A, Samee ADM, Razak RKA, Ramis MK, Steady and transient state analyses on conjugate laminar forced convection heat transfer. Arch Comput Methods Eng. 2018;1–36.

  3. Afzal A, Mohammed Samee AD, Abdul Razak RK, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135(3):1797–811.

    Article  CAS  Google Scholar 

  4. Gregg A, Parker T, Swenson R. A” real world” examination of PV system design and performance. In Conference record of the thirty-first IEEE photovoltaic specialists conference; 2005.

  5. Mondol JD, Yohanis YG, Norton B. Optimal sizing of array and inverter for grid-connected photovoltaic systems. Sol Energy. 2006;80(12):1517–39.

    Article  CAS  Google Scholar 

  6. Tonui JK, Tripanagnostopoulos Y. Performance improvement of PV/T solar collectors with natural air flow operation. Sol Energy. 2008;82(1):1–12.

    Article  Google Scholar 

  7. Mousazadeh H, Keyhani A, Javadi A, Mobli H, Abrinia K, Sharifi A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew Sustain Energy Rev. 2009;13(8):1800–18.

    Article  Google Scholar 

  8. Lee CY, Chou PC, Chiang CM, Lin CF. Sun tracking systems: a review. Sensors. 2009;9:3875–90.

    Article  PubMed  Google Scholar 

  9. Mani M, Pillai R. Impact of dust on solar photovoltaic (PV) performance: research status, challenges and recommendations. Renew Sustain Energy Rev. 2010;14(9):3124–31.

    Article  Google Scholar 

  10. Chang YP. An ant direction hybrid differential evolution algorithm in determining the tilt angle for photovoltaic modules. Expert Syst Appl. 2010;37(7):5415–22.

    Article  Google Scholar 

  11. Armstrong S, Hurley WG. A thermal model for photovoltaic panels under varying atmospheric conditions. Appl Therm Eng. 2010;30(11–12):1488–95.

    Article  Google Scholar 

  12. Park KE, Kang GH, Kim HI, Yu GJ, Kim JT. Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module. Energy. 2010;35(6):2681–7.

    Article  CAS  Google Scholar 

  13. Seme S, Štumberger G. A novel prediction algorithm for solar angles using solar radiation and Differential Evolution for dual-axis sun tracking purposes. Sol Energy. 2011;85(11):2757–70.

    Article  Google Scholar 

  14. Wang YJ, Hsu PC. An investigation on partial shading of PV modules with different connection configurations of PV cells. Energy. 2011;36(5):3069–78.

    Article  Google Scholar 

  15. Beringer S, Schilke H, Lohse I, Seckmeyer G. Case study showing that the tilt angle of photovoltaic plants is nearly irrelevant. Sol Energy. 2011;85(3):470–6.

    Article  Google Scholar 

  16. Zogou O, Stapountzis H. Energy analysis of an improved concept of integrated PV panels in an office building in central Greece. Appl Energy. 2011;88(3):853–66.

    Article  Google Scholar 

  17. Khatib T, Mohamed A, Sopian K. Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: case study of Kuala Terengganu, Malaysia. Energy Build. 2012;47:321–31.

    Article  Google Scholar 

  18. Hummon M, Denholm P, Margolis R. Impact of photovoltaic orientation on its relative economic value in wholesale energy markets; 2012.

  19. Khare A, Rangnekar S. A review of particle swarm optimization and its applications in solar photovoltaic system. Appl Soft Comput J. 2013;13(5):2997–3006.

    Article  Google Scholar 

  20. Andrews RW, Pearce JM. The effect of spectral albedo on amorphous silicon and crystalline silicon solar photovoltaic device performance. Sol Energy. 2013;91:233–41.

    Article  CAS  Google Scholar 

  21. Yadav AK, Chandel SS. Tilt angle optimization to maximize incident solar radiation: a review. Renew Sustain Energy Rev. 2013;23:503–13.

    Article  Google Scholar 

  22. Kumar M, Afzal A, Ramis MK. Investigation of physicochemical and tribological properties of TiO2 nano-lubricant oil of different concentrations. Tribol Finnish J Tribol. 2017;35(3):6–15.

    Google Scholar 

  23. Afzal A, Mohammed Samee AD, Abdul J, Ahamed Shafvan S, Ajinas PV, Ahammedul Kabeer KM. Heat transfer analysis of plain and dimpled tubes with different spacings”. Heat Transf. Res. 2018;47(3):556–68.

    Article  Google Scholar 

  24. Afzal A, Samee ADM, Razak RKA. Comparative thermal performance analysis of water, engine coolant oil and MWCNT-W nanofluid in a radiator. Model Meas Control B. 2018;87(1):1–6.

    Article  Google Scholar 

  25. Afzal A, Samee ADM, Razak RKA, Ramis MK. Heat transfer characteristics of MWCNT nanofluid in rectangular mini channels. Int J Heat Technol. 2018;36(1):222–8.

    Article  Google Scholar 

  26. Afzal A, Mohammed Samee AD, Abdul Razak RK. Experimental thermal investigation of CuO–W nanofluid in circular minichannel. Model Meas Control B. 2017;86(2):335–44.

    Article  Google Scholar 

  27. Kaplani E, Kaplanis S. Thermal modelling and experimental assessment of the dependence of PV module temperature on wind velocity and direction, module orientation and inclination. Sol Energy. 2014;107:443–60.

    Article  Google Scholar 

  28. Bianchi C, Smith AD. Effects of irradiance and ambient temperature on a decision-making tool for rooftop PV array sizing for commercial buildings. In: ASME 2016 10th international conference on energy sustainability collocated with the ASME 2016 power conference and the ASME 2016 14th international conference on fuel cell science, engineering and technology. American Society of Mechanical Engineers; 2016.

  29. Hsu PC, et al. Effect of switching scheme on the performance of a hybrid solar PV system. Renew Energy. 2016;96:520–30.

    Article  Google Scholar 

  30. Wu Y, Wu S, Xiao L. Heat dissipation characteristics from photovoltaic cells within the partitioned or non-partitioned glazed cavity to the windy environment. Renew Energy. 2018;127:642–52.

    Article  Google Scholar 

  31. Zsiborács H, et al. Change of real and simulated energy production of certain photovoltaic technologies in relation to orientation, tilt angle and dual-axis sun-tracking. A case study in Hungary. Sustain. 2018;10(5):1–19.

    Article  Google Scholar 

  32. Notton G, Muselli M, Louche A. Two estimation methods for monthly mean hourly total irradiation on tilted surfaces from monthly mean daily horizontal irradiation from solar radiation data of Ajaccio, Corsica. Sol Energy. 1996;57(2):141–53.

    Article  Google Scholar 

  33. Soulayman SS. On the optimum tilt of solar absorber plates. Renew Energy. 1991;1(3):551–4.

    Article  CAS  Google Scholar 

  34. Krauter S. Increased electrical yield via water flow over the front of photovoltaic panels. Sol Energy Mater Sol Cells. 2004;82(1–2):131–7.

    Article  CAS  Google Scholar 

  35. Royne A, Dey CJ. Design of a jet impingement cooling device for densely packed PV cells under high concentration. Sol Energy. 2007;81(8):1014–24.

    Article  CAS  Google Scholar 

  36. Solanki CS, Sangani CS, Gunashekar D, Antony G. Enhanced heat dissipation of V-trough PV modules for better performance. Sol Energy Mater Sol Cells. 2008;92(12):1634–8.

    Article  CAS  Google Scholar 

  37. Wang Y, Fang Z, Zhu L, Huang Q, Zhang Y, Zhang Z. The performance of silicon solar cells operated in liquids. Appl Energy. 2009;86(7–8):1037–42.

    Article  CAS  Google Scholar 

  38. Maiti S, Vyas K, Ghosh PK. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling. Sol Energy. 2010;84(8):1439–44.

    Article  CAS  Google Scholar 

  39. Malvi CS, Dixon-Hardy DW, Crook R. Energy balance model of combined photovoltaic solar-thermal system incorporating phase change material. Sol Energy. 2011;85(7):1440–6.

    Article  CAS  Google Scholar 

  40. Kim JP, Lim H, Song JH, Chang YJ, Jeon CH. Numerical analysis on the thermal characteristics of photovoltaic module with ambient temperature variation. Sol Energy Mater Sol Cells. 2011;95(1):404–7.

    Article  CAS  Google Scholar 

  41. Liu L, Zhu L, Wang Y, Huang Q, Sun Y, Yin Z. Heat dissipation performance of silicon solar cells by direct dielectric liquid immersion under intensified illuminations. Sol Energy. 2011;85(5):922–30.

    Article  CAS  Google Scholar 

  42. Kerzmann T, Schaefer L. System simulation of a linear concentrating photovoltaic system with an active cooling system. Renew Energy. 2012;41:254–61.

    Article  Google Scholar 

  43. Teo HG, Lee PS, Hawlader MNA. An active cooling system for photovoltaic modules. Appl Energy. 2012;90(1):309–15.

    Article  Google Scholar 

  44. Tina GM, Rosa-Clot M, Rosa-Clot P, Scandura PF. Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy. 2012;39(1):17–26.

    Article  CAS  Google Scholar 

  45. Rustemli S, Dincer F, Unal E, Karaaslan M, Sabah C. The analysis on sun tracking and cooling systems for photovoltaic panels. Renew Sustain Energy Rev. 2013;22:598–603.

    Article  Google Scholar 

  46. Kahoul N, Houabes M, Sadok M. Assessing the early degradation of photovoltaic modules performance in the Saharan region. Energy Convers Manag. 2014;82:320–6.

    Article  Google Scholar 

  47. Karami N, Rahimi M. Heat transfer enhancement in a hybrid microchannel-photovoltaic cell using Boehmite nanofluid. Int Commun Heat Mass Transf. 2014;55:45–52.

    Article  CAS  Google Scholar 

  48. Nižetić S, Arıcı M, Bilgin F, Grubišić-Čabo F. Investigation of pork fat as potential novel phase change material for passive cooling applications in photovoltaics. J Clean Prod. 2018;170:1006–16.

    Article  Google Scholar 

  49. Arıcı M, Bilgin F, Nižetić S, Papadopoulos AM. Phase change material based cooling of photovoltaic panel: a simplified numerical model for the optimization of the phase change material layer and general economic evaluation. J Clean Prod. 2018;189:738–45.

    Article  Google Scholar 

  50. Pepelyshev A, Steland A, Avellan-Hampe A. Acceptance sampling plans for photovoltaic modules with two-sided specification limits. Prog Photovolt Res Appl. 2014;22(6):603–11.

    Article  Google Scholar 

  51. Karami N, Rahimi M. Heat transfer enhancement in a PV cell using Boehmite nanofluid. Energy Convers Manag. 2014;86:275–85.

    Article  CAS  Google Scholar 

  52. Wu S, Xiong C. Passive cooling technology for photovoltaic panels for domestic houses. Int J Low-Carbon Technol. 2014;9(2):118–26.

    Article  Google Scholar 

  53. Irwan YM, et al. Indoor test performance of PV panel through water cooling method, vol. 79. Hoboken: Elsevier; 2015.

    Google Scholar 

  54. Rahman MM, Hasanuzzaman M, Rahim NA. Effects of various parameters on PV-module power and efficiency. Energy Convers Manag. 2015;103:348–58.

    Article  Google Scholar 

  55. Sahay A, Sethi VK, Tiwari AC, Pandey M. A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS). Renew Sustain Energy Rev. 2015;42:306–12.

    Article  Google Scholar 

  56. Hasanuzzaman M, Malek ABMA, Islam MM, Pandey AK, Rahim NA. Global advancement of cooling technologies for PV systems: a review. Sol Energy. 2016;137:25–45.

    Article  Google Scholar 

  57. Liu B, Jordan R. Daily insolation on surfaces tilted towards equator. ASHRAE J. 1961;10.

  58. Tsalides P, Thanailakis A. Direct computation of the array optimum tilt angle in constant-tilt photovoltaic systems. Sol Cells. 1985;14(1):83–94.

    Article  Google Scholar 

  59. Yakup MAHM, Malik AQ. AQ Malik (2001) Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew. Energy. 2001;24(9):223–34.

    Article  CAS  Google Scholar 

  60. Ulgen K. Optimum tilt angle for solar collectors. Energy Sources Part A Recover Util Environ Effic. 2006;28(13):1171–80.

    Article  CAS  Google Scholar 

  61. Gunerhan H, Hepbasli A. Determination of the optimum tilt angle of solar collectors for building applications. Build Environ. 2007;42(2):779–83.

    Article  Google Scholar 

  62. Chang TP. Study on the optimal tilt angle of solar collector according to different radiation types. Int J Appl Sci Eng. 2008;6(2):151–61.

    Google Scholar 

  63. Zhao Q, Wang P, Goel L. Optimal PV panel tilt angle based on solar radiation prediction. In: 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS 2010) 2010; pp 425–430.

  64. Tang R, Gao W, Yu Y, Chen H. Optimal tilt-angles of all-glass evacuated tube solar collectors. Energy. 2009;34(9):1387–95.

    Article  Google Scholar 

  65. Daut I, Irwanto M, Irwan YM, Gomesh N, Ahmad NS. Clear sky global solar irradiance on tilt angles of photovoltaic module in Perlis, Northern Malaysia. In: INECCE 2011: the 1st international conference on electrical, control and computer engineering, 2011; pp 445–450.

  66. Pour HSS, Beheshti HK, Rahnama M. The gain of the energy under the optimum angles of solar panels during a year in Isfahan, Iran. Energy Sources Part A Recover Util Environ Effic. 2011;33(13):1281–90.

    Article  Google Scholar 

  67. Elhab BR, et al. Optimizing tilt angles and orientations of solar panels for Kuala Lumpur, Malaysia. Sci Res Essays. 2012;7(42):3758–67.

    Google Scholar 

  68. Sunderan P, Ismail A, Singh B. Optimum tilt angle and orientation of stand-alone photovoltaic electricity generation systems for rural electrification. J Appl Sci. 2011;11(7):1219–24.

    Article  Google Scholar 

  69. T. Khatib, A. Mohamed, and K. Sopian, “On the monthly optimum tilt angle of solar panel for five sites in Malaysia. In: 2012 IEEE international power engineering and optimization conferrence (PEOCO) 2012—conference Proceedings., no. June, 2012; pp. 7–10.

  70. Agarwal A, Vashishtha VK, Mishra SN. Comparative approach for the optimization of tilt angle to receive maximum radiation. Int J Eng Res Technol. 2012;1(5):1–9.

    Google Scholar 

  71. Sun L, Lu L, Yang H. Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Appl Energy. 2012;90(1):233–40.

    Article  Google Scholar 

  72. Khorasanizadeh H, Mohammadi K, Mostafaeipour A. Establishing a diffuse solar radiation model for determining the optimum tilt angle of solar surfaces in Tabass, Iran. Energy Convers Manag. 2014;78:805–14.

    Article  Google Scholar 

  73. Drury E, Lopez A, Denholm P, Margolis R. Relative performance of tracking versus fi xed tilt photovoltaic systems in the USA. Prog Photovoltaics Res Appl. 2014;22:1302–15.

    Google Scholar 

  74. Khoo YS, Reindl T, Aberle AG, Member S. Optimal orientation and tilt angle for maximizing in-plane solar irradiation for PV applications in Singapore. IEEE J Photovolt. 2014;4(2):647–53.

    Article  Google Scholar 

  75. Hartner M, Ortner A, Hiesl A, Haas R. East to west—the optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Appl Energy. 2015;160:94–107.

    Article  Google Scholar 

  76. Despotovic M, Nedic V. Comparison of optimum tilt angles of solar collectors determined at yearly, seasonal and monthly levels. Energy Convers Manag. 2015;97:121–31.

    Article  Google Scholar 

  77. Farhan S, Tabbassum K, Talpur S, Bux M. Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan. Int J Electr Power Energy Syst. 2015;64:1073–80.

    Article  Google Scholar 

  78. Soulayman S, Sabbagh W. Solar collector optimum tilt and orientation. Open J Renew Sustain Energy. 2015;2(1):1–9.

    Article  Google Scholar 

  79. Nijegorodov N, Devan KRS, Jain PK, Carlsson S. Atmospheric transmittance models and an of absorber plate, variously oriented at any latitude. Renew Energy. 1994;4(5):529–43.

    Article  Google Scholar 

  80. Calabrò E. An algorithm to determine the optimum tilt angle of. J Renew Energy. 2013;2013:12.

    Google Scholar 

  81. Akhlaghi S, Sangrody H, Sarailoo M, Rezaeiahari M. Efficient operation of residential solar panels with determination of the optimal tilt angle and optimal intervals based on forecasting model. IET Renew Power Gener. 2017;11:1261–7.

    Article  Google Scholar 

  82. Tripathy M, Yadav S, Sadhu PK, Panda SK. Determination of optimum tilt angle and accurate insolation of BIPV panel influenced by adverse effect of shadow. Renew Energy. 2017;104:211–23.

    Article  Google Scholar 

  83. Yadav S, Panda SK, Tripathy M. Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow. Renew Energy. 2018;127:11–23.

    Article  Google Scholar 

  84. Conceição R, Silva HG, Fialho L, Lopes FM, Collares-Pereira M. PV system design with the effect of soiling on the optimum tilt angle. Renew Energy. 2019;133:787–96.

    Article  Google Scholar 

  85. Shariah A, Al-Akhras MA, Al-Omari IA. Optimizing the tilt angle of solar collectors. Renew Energy. 2002;26:587–98.

    Article  Google Scholar 

  86. Hussein HMS, Ahmad GE, El-Ghetany HH. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Convers Manag. 2004;45(15–16):2441–52.

    Article  CAS  Google Scholar 

  87. Calabrò E. Determining optimum tilt angles of photovoltaic panels at typical north-tropical latitudes. J Renew Sustain Energy. 2009;1(3):033104.

    Article  Google Scholar 

  88. Benghanem M. Optimization of tilt angle for solar panel: case study for Madinah, Saudi Arabia. Appl Energy. 2011;88(4):1427–33.

    Article  Google Scholar 

  89. Ahmad MJ, Tiwari GN. Optimization of tilt angle for solar collector to receive maximum radiation. Open Renew Energy J. 2009;2:19–24.

    Article  Google Scholar 

  90. Rowlands IH, Kemery BP, Beausoleil-Morrison I. Optimal solar-PV tilt angle and azimuth: an Ontario (Canada) case-study. Energy Policy. 2011;39(3):1397–409.

    Article  Google Scholar 

  91. Bojić M, Bigot D, Miranville F, Parvedy-Patou A, Radulović J. Optimizing performances of photovoltaics in Reunion Island—tilt angle. Prog Photovolt Res Appl. 2011;20(8):923–35.

    Article  CAS  Google Scholar 

  92. Emam M, Ookawara S, Ahmed M. Performance study and analysis of an inclined concentrated photovoltaic-phase change material system. Sol Energy. 2017;150:229–45.

    Article  Google Scholar 

  93. Rhodes JD, Upshaw CR, Cole WJ, Holcomb CL, Webber ME. A multi-objective assessment of the effect of solar PV array orientation and tilt on energy production and system economics. Sol Energy. 2014;108:28–40.

    Article  Google Scholar 

  94. Gharakhani Siraki A, Pillay P. Study of optimum tilt angles for solar panels in different latitudes for urban applications. Sol Energy. 2012;86(6):1920–8.

    Article  Google Scholar 

  95. Duffie J, Beckman W. Solar engineering of thermal processes. 3rd ed. New York: Wiley; 1980.

    Google Scholar 

  96. Vargas O, Pinilla G, Vasquez J. Sizing and study of the energy production of a grid—tied photovoltaic system using PV syst software. TECCIENCIA. 2017;12(22):27–32.

    Google Scholar 

  97. Khanna S, Reddy KS, Mallick TK. Performance analysis of tilted photovoltaic system integrated with phase change material under varying operating conditions. Energy. 2017;133:887–99.

    Article  Google Scholar 

  98. Lu H, Zhao W. Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system. Appl Energy. 2018;220(2018):514–26.

    Article  Google Scholar 

  99. Lau KY, Tan CW, Yatim AHM. Effects of ambient temperatures, tilt angles, and orientations on hybrid photovoltaic/diesel systems under equatorial climates. Renew Sustain Energy Rev. 2018;81(June):2625–36.

    Article  Google Scholar 

  100. Ali Morad AM, Al-Sayyab AKS, Abdulwahid MA. Optimisation of tilted angles of a photovoltaic cell to determine the maximum generated electric power: a case study of some Iraqi cities. Case Stud Therm Eng. 2018;12:484–8.

    Article  Google Scholar 

  101. Jacobson MZ, Jadhav V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol Energy. 2017;169:55–66.

    Article  Google Scholar 

  102. Kumar NM, Dinniyah FS. Influence of tilt angle on energy yields and performance ratios of grid connected photovoltaic generators in Southeast Asia. Prog Ind Ecol Int J. 2019;13(3):264.

    Article  Google Scholar 

  103. Al Garni HZ, Awasthi A, Wright D. Optimal orientation angles for maximizing energy yield for solar PV in Saudi Arabia. Renew Energy. 2019;133:538–50.

    Article  Google Scholar 

  104. Asl-Soleimani E, Farhangi S, Zabihi MS. The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran. Renew Energy. 2001;24(3–4):459–68.

    Article  CAS  Google Scholar 

  105. Kacira M, Simsek M, Babur Y, Demirkol S. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew Energy. 2004;29(8):1265–75.

    Article  Google Scholar 

  106. Elhassan ZAM, Zain MFM, Sopian K, Awadalla A. Output energy of photovoltaic module directed at optimum slope angle in Kuala Lumpur, Malaysia. Res J Appl Sci. 2011;6(2):104–9.

    Article  Google Scholar 

  107. Xu R, Ni K, Hu Y, Si J, Wen H, Yu D. Analysis of the optimum tilt angle for a soiled PV panel. Energy Convers Manag. 2017;148:100–9.

    Article  Google Scholar 

  108. Fahl P, Ganapathisubbu SG. Tracking benefits for solar collectors installed in Bangalore. J Renew Sustain Energy. 2011;3(2):1–12.

    Article  Google Scholar 

  109. Sun LL, Li M, Yuan YP, Cao XL, Lei B, Yu NY. Effect of tilt angle and connection mode of PVT modules on the energy efficiency of a hot water system for high-rise residential buildings. Renew Energy. 2016;93:291–301.

    Article  Google Scholar 

  110. Abdeen E, Orabi M, Hasaneen E. Optimum tilt angle for photovoltaic system in desert environment. Sol Energy. 2017;155:267–80.

    Article  Google Scholar 

  111. Zhi Zhang L, Jian Pan A, Rong Cai R, Lu H. Indoor experiments of dust deposition reduction on solar cell covering glass by transparent super-hydrophobic coating with different tilt angles. Sol Energy. 2019;188:1146–55.

    Article  CAS  Google Scholar 

  112. Asowata O, Swart J, Pienaar C. Optimum tilt angles for photovoltaic panels during winter months in the vaal triangle, South Africa. Smart Grid Renew. Energy. 2012;03(02):119–25.

    Article  Google Scholar 

  113. Liu X. Calculation and analysis of optimal tilt angle for PV/T hybrid collector. In: Proceedings of the 2012 international conference on intelligent system design and engineering application (ISDEA) 2012; pp. 791–795.

  114. Kaldellis J, Zafirakis D. Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period. Energy. 2012;38(1):305–14.

    Article  Google Scholar 

  115. Eldin SAS, Abd-elhady MS, Kandil HA. Feasibility of solar tracking systems for PV panels in hot and cold regions. Renew Energy. 2016;85:228–33.

    Article  Google Scholar 

  116. Kaddoura TO, Ramli MAM, Al-turki YA. On the estimation of the optimum tilt angle of PV panel in Saudi Arabia. Renew Sustain Energy Rev. 2016;65:626–34.

    Article  Google Scholar 

  117. Malek NAAA, Chew JM, Naamandadin NA. A study on association between tilt angle, solar insolation exposure and output of solar PV panel using BIM 3D modelling. In: MATEC web of conferences (ICRMCE 2018), 2018; vol. 195, 06009, p. 11.

  118. Ullah A, Imran H, Maqsood Z, Butt NZ. Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan. Renew Energy. 2019;139:830–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif Afzal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunus Khan, T.M., Soudagar, M.E.M., Kanchan, M. et al. Optimum location and influence of tilt angle on performance of solar PV panels. J Therm Anal Calorim 141, 511–532 (2020). https://doi.org/10.1007/s10973-019-09089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09089-5

Keywords

Navigation