Skip to main content
Log in

Kinetic and thermodynamic approaches on thermal degradation of sepiolite crystal using XRD-analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A method was proposed to use XRD-data for thermal analyses of crystalline solids. Therefore, the XRD-pattern was recorded for natural and preheated sepiolite samples at the different temperatures in the interval of 25–800 °C for 4 h. The temperature-dependent intensity (I) of the most characteristic 001 reflection was used as a crystallite variable. The assumed parameters \(k = - (\partial I/\partial T)_{\text{p}} / I\) and \(K = \left( {1 - x} \right)/ x\) were calculated for each heating temperature, where I0 is the intensity for the natural sample and \(x = I/I_{0}\) is the relative crystallite of the heated ones, since the k and K supply Arrhenius equation and van’t Hoff equation behave as reaction rate constant and equilibrium constant for a chemical reaction, respectively. Arrhenius plot showed that the degradation has three kinetic steps. Two of these are due to the stepwise (1, 2) dehydration and third (3) originated from dehydroxylation of sepiolite crystal. Three activation energies were obtained such as \(E_{1}^{\# } = 8.6\) kJ mol−1, \(E_{2}^{\# } = 28.5\) kJ mol−1, and \(E_{3}^{\# } = 124.8\) kJ mol−1 from the slope of three intersected straight lines which are plotted according to the Arrhenius equation. Otherwise, van’t Hoff plot indicated that the degradation has two thermodynamic steps which are due to the dehydration (1, 2) and dehydroxylation (3). The basic thermodynamic relationship, \(\Delta G^{0} = \Delta H^{0} - T\Delta S^{0} ,\) for these steps are \(\Delta G_{1,2}^{0} = 46{,}933 - 65.7T\) and \(\Delta G_{3}^{0} = 143{,}491 - 177.1T\), respectively. Finally, the spontaneous tendency for the thermal degradation was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu L, Chen H, Shiko E, Fan X, Zhou Y, Zhang G, Lou X, Hu XE. Low-cost DETA impregnation of acid-activated sepiolite for CO2 capture. Chem Eng J. 2018;353:940–8.

    Article  CAS  Google Scholar 

  2. Tian G, Wang W, Kang Y, Wang A. Study on thermal activated sepiolite for enhancing decoloration of crude palm oil. J Therm Anal Calorim. 2014;117:1211–9.

    Article  CAS  Google Scholar 

  3. Akkari M, Arando P, Belver C, Bedia J, Amara AB, Ruiz-Hitzky E. ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceutical in wastewater. Appl Clay Sci. 2018;156:104–9.

    Article  CAS  Google Scholar 

  4. Zhou F, Yan C, Sun Q, Komarneni S. TiO2/sepiolite nanocomposites doped with rare earth ions: preparation, characterization and visible light photocatalytic activity. Microporous Mesoporous Mater. 2019;274:25–32.

    Article  CAS  Google Scholar 

  5. Gonzalez del Campto MM, Darder M, Aranda P, Akkari M, Huttel Y, Mayoral A, Bettini J, Ruiz-Hitzky E. Functional hybrid nanopaper by assembling nanaofibers of cellulose and sepiolite. Adv Funct Mater. 2018;28:1703048(1-13).

    Google Scholar 

  6. Hou K, Wang G, Zhu Y, Ezzatahmadi N, Fu L, Tang A, Yang H, Xi Y. Sepilote/Fe3O4 composite for effective degradation of diuron. Appl Clay Sci. 2019;181:105243(1-9).

    Article  Google Scholar 

  7. Galan E. Properties and applications of palygorskites-sepiolite clays. Clay Miner. 1996;31:443–53.

    Article  CAS  Google Scholar 

  8. Murray HH. Applied clay mineralogy today and tomorrow. Clay Miner. 1999;34:39–49.

    Article  CAS  Google Scholar 

  9. Brunauer K, Preisinger A. Structur und entstehung des sepioliths. Tschermaks Min Petr Mitt. 1959;6:120–40.

    Article  Google Scholar 

  10. Wang F, Liang J, Tang Q, Chen C, Chen Y. Channel microstructure and thermal insulation mechanism of sepiolite mineral nanofibers. J Nanosci Nanotechnol. 2014;14:3937–42.

    Article  CAS  Google Scholar 

  11. Prost R. Infrared study of the interactions between the different kinds of water molecules present in sepiolite. Spectrochim Acta. 1975;31A:1497–9.

    Article  CAS  Google Scholar 

  12. Ahlrichs JL, Serna C, Serratosa JM. Structural hydroxyls in sepiolites. Clay Clay Miner. 1989;23:119–24.

    Article  Google Scholar 

  13. Perraki Th, Orfanoudaki A. Study of raw and thermally treated sepioite from the Mantoudi area, Euboea, Greece: X-ray diffraction, TG/DTG/DTA and FTIR investigations. J Therm Anal Calorim. 2008;9:589–93.

    Article  Google Scholar 

  14. Serna C, Ahlrichs JL, Serratosa JM. Folding in sepiolite crystals. Clay Clay Miner. 1975;23:452–7.

    Article  CAS  Google Scholar 

  15. Yener N, Önal M, Üstünışık G, Sarıkaya Y. Thermal behavior of a mineral mixture of sepiolite and dolomite. J Therm Anal Calorim. 2007;88:813–7.

    Article  CAS  Google Scholar 

  16. Frost RL, Ding Z. Controlled rate thermal analysis and differential scanning calorimetry of sepiolites and palygorskites. Thermochim Acta. 2003;397:119–28.

    Article  CAS  Google Scholar 

  17. Kök MV. Thermal characterization of sepiolite samples. Energy Sources Part A. 2013;35:173–83.

    Article  Google Scholar 

  18. Dandy AJ, Nadiye-Tabbiruka MS. The effect of heating in vacuum on the microporosity of sepiolite. Clay Clay Miner. 1975;23:428–30.

    Article  CAS  Google Scholar 

  19. Grillet Y, Cases JM, Francois M, Rouquerol J, Poirier JE. Modification on the porous structure and surface area on sepiolite under vacuum thermal treatment. Clay Clay Miner. 1988;36:233–42.

    Article  CAS  Google Scholar 

  20. Malek Z, Balek V, Garfinkel-Shweky D, Yariv S. The study of the dehydration and dehydroxylation of smectites by emanation thermal analysis. J Therm Anal Calorim. 1997;48:83–92.

    Article  CAS  Google Scholar 

  21. Göktaş AA, Mısırlı Z, Baykara T. Sintering behavior of sepiolite. Ceram Int. 1997;23:305–11.

    Article  Google Scholar 

  22. Yebra-Rodriquez A, Martin-Ramos JD, Del Rey F, Viseras C, Lopez-Gainda A. Effect of acid treatment on the structure of sepiolite. Clay Miner. 2003;38:353–60.

    Article  Google Scholar 

  23. Ogorodova LP, Kiseleva IA, Vigasina MF, Kabalov YK, Grishchenko RO, Mel’chakova LV. Natural sepiolite: enthalpies of dehydration, dehydroxylation, and formation derived from thermochemical studies. Am Mineral. 2014;99:2369–73.

    Article  Google Scholar 

  24. Kıyohiro T, Otsuka R. Dehydration mechanism of bound water in sepiolite. Thermochim Acta. 1989;147:127–38.

    Article  Google Scholar 

  25. Yılmaz M, Kalpaklı Y, Pişkin S. Thermal behavior and dehydroxylation kinetics of naturally occurring sepiolite and bentonite. J Therm Anal Calorim. 2013;114:1191–9.

    Article  Google Scholar 

  26. Balcı S. Effect of heating and pre-treatment on pore size distribution of sepiolite. Clay Miner. 1971;34:647–55.

    Article  Google Scholar 

  27. Otsuka R, Moriko T, Sakamoto T. Mineralogische Eigenschaften vom Meerschaum von Eskişehir, Turkei. Mem Sch Sci Eng Waseda Univ. 1973;37:43–52.

    CAS  Google Scholar 

  28. Ece ÖI, Çoban F. Geology, occurrence, and genesis of Eskişehir sepiolites, Turkey. Clay Clay Miner. 1994;42:81–92.

    Article  CAS  Google Scholar 

  29. Önal M, Yılmaz H, Sarıkaya Y. Some physicochemical properties of the white sepiolite known as pipestone from Eskişehir, Turkey. Clay Clay Miner. 2008;56:511–9.

    Article  Google Scholar 

  30. Moore DM, Reynolds RC Jr. X-ray diffraction and the identification and analysis of clay minerals. Oxford: Oxford University Press; 1997.

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Ankara University Research Fund (Project No. 12B4240016) for financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müşerref Önal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarıkaya, Y., Önal, M. & Pekdemir, A.D. Kinetic and thermodynamic approaches on thermal degradation of sepiolite crystal using XRD-analysis. J Therm Anal Calorim 140, 2667–2672 (2020). https://doi.org/10.1007/s10973-019-09053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09053-3

Keywords

Navigation