Skip to main content
Log in

Darcy–Forchheimer three-dimensional flow of carbon nanotubes with nonlinear thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The present study elaborates three-dimensional (3D) thermally radiative flow of carbon nanotubes dispersed in water with Darcy–Forchheimer porous space. A bidirectional linear stretchable sheet is used to generate the flow. Darcy–Forchheimer relation specifies porous space. Single-wall carbon nanotubes and multi-wall carbon nanotubes are accounted. Solutions development is due to optimal homotopy analysis technique. Optimal data of sundry variables are obtained. The optimal solution interpretations of velocities and temperature are interpreted via plots. Physical quantities are also elaborated. Our results reveal that thermal field against radiation and temperature ratio parameter is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252.

    CAS  Google Scholar 

  2. Xue QZ. Model for thermal conductivity of carbon nanotube-based composites. Phys B Condens Matter. 2005;368:302–7.

    CAS  Google Scholar 

  3. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49:240–50.

    CAS  Google Scholar 

  4. Wang J, Zhu J, Zhang X, Chen Y. Heat transfer and pressure drop of nanofluids containing carbon nanotubes in laminar flows. Exp Therm Fluid Sci. 2013;44:716–21.

    CAS  Google Scholar 

  5. Safaei MR, Togun H, Vafai K, Kazi SN, Badarudin A. Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids. Numer Heat Transf Part A. 2014;66:1321–40.

    CAS  Google Scholar 

  6. Ellahi R, Hassan M, Zeeshan A. Study of natural convection MHD nanofluid by means of single and multi walled carbon nanotubes suspended in a salt water solutions. IEEE Trans Nanotech. 2015;14:726–34.

    CAS  Google Scholar 

  7. Iqbal Z, Azhar E, Maraj EN. Transport phenomena of carbon nanotubes and bioconvection nanoparticles on stagnation point flow in presence of induced magnetic field. Phys E Low-dimens Syst Nanostruct. 2017;91:128–35.

    CAS  Google Scholar 

  8. Hayat T, Hussain Z, Alsaedi A, Ahmad B. Numerical study for slip flow of carbon-water nanofluids. Comp Methods Appl Mech Eng. 2017;319:366–78.

    Google Scholar 

  9. Raei B, Shahraki F, Jamialahmadi M, Peyghambarzadeh SM. Experimental investigation on the heat transfer performance and pressure drop characteristics of \(\gamma\)-\(\text{Al}_{2}\text{O}_{3}/\text{water}\) nanofluid in a double tube counter flow heat exchanger. J Therm Anal Calorim. 2017;127:2561–75.

    CAS  Google Scholar 

  10. Rashidi S, Akar S, Bovand M, Ellahi R. Volume of fluid model to simulate the nanofluid flow and entropy generation in a single slope solar still. Renew Energy. 2018;115:400–10.

    CAS  Google Scholar 

  11. Majka TM, Raftopoulos KN, Pielichowski K. The influence of POSS nanoparticles on selected thermal properties of polyurethane-based hybrids. J Therm Anal Calorim. 2018;133(1):289–301.

    CAS  Google Scholar 

  12. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135:437–60.

    CAS  Google Scholar 

  13. Hayat T, Haider F, Muhammad T, Ahmad B. Darcy–Forchheimer flow of carbon nanotubes due to a convectively heated rotating disk with homogeneous-heterogeneous reactions. J Therm Anal Calorim. 2019;137:1939–49.

    CAS  Google Scholar 

  14. Sheikholeslami M, Jafaryar M, Shafee A, Li Z, Haq RU. Heat transfer of nanoparticles employing innovative turbulator considering entropy generation. Int J Heat Mass Transf. 2019;136:1233–40.

    CAS  Google Scholar 

  15. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlilih I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    CAS  Google Scholar 

  16. Sheikholeslami M. Numerical approach for MHD \(\text{Al}_{2}\text{O}_{3}\) -water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Google Scholar 

  17. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of \(\text{Al}_{2}\text{O}_{3}\)-\(\text{H}_{2}\text{O}\) nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Google Scholar 

  18. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Google Scholar 

  19. Nawaz S, Hayat T, Alsaedi A. Numerical study for peristalsis of Sisko nanomaterials with entropy generation. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08546-5.

    Article  Google Scholar 

  20. Rapits A, Perdikis C. Viscoelastic flow by the presence of radiation. ZAMP. 1998;78:277–9.

    Google Scholar 

  21. Ariel PD. The three-dimensional flow past a stretching sheet and the homotopy perturbation method. Comput Math Appl. 2007;54:920–5.

    Google Scholar 

  22. Magyari E, Pantokratoras A. Note on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows. Int Commun Heat Mass Transf. 2011;38:554–6.

    Google Scholar 

  23. Pantokratoras A, Fang T. Blasius flow with non-linear Rosseland thermal radiation. Meccanica. 2014;49:1539–45.

    Google Scholar 

  24. Mushtaq A, Mustafa M, Hayat T, Alsaedi A. Nonlinear radiative heat transfer in the flow of nanofluid due to solar energy: a numerical study. J Taiwan Inst Chem Eng. 2014;45:1176–83.

    CAS  Google Scholar 

  25. Cortell R. MHD (magneto-hydrodynamic) flow and radiative nonlinear heat transfer of a viscoelastic fluid over a stretching sheet with heat generation/absorption. Energy. 2014;74:896–905.

    CAS  Google Scholar 

  26. Pantokratoras A. Natural convection along a vertical isothermal plate with linear and non-linear Rosseland thermal radiation. Int J Therm Sci. 2014;84:151–7.

    Google Scholar 

  27. Reddy JVR, Sugunamma V, Sandeep N. Impact of nonlinear radiation on 3D magnetohydrodynamic flow of methanol and kerosene based ferrofluids with temperature dependent viscosity. J Mol Liq. 2017;236:93–100.

    Google Scholar 

  28. Ramesha GK, Prasannakumara PC, Gireesha BJ, Shehzad SA, Abbasi FM. Three dimensional flow of Maxwell fluid with suspended nanoparticles past a bidirectional porous stretching surface with thermal radiation. Therm Sci Eng Prog. 2017;1:6–14.

    Google Scholar 

  29. Bilal M, Sagheer M, Hussain S. Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity. Alex Eng J. 2018;57:3281–9.

    Google Scholar 

  30. Hosseinzadeh K, Asadi A, Mogharrebi AR, Khalesi J, Mousavisani S, Ganji DD. Entropy generation analysis of \((\text{CH}_{2}\text{OH})_{2}\) containing CNTs nanofluid flow under effect of MHD and thermal radiation. Case Stud Therm Eng. 2019;14:100482.

    Google Scholar 

  31. Alamri SZ, Ellahi R, Shehzad N, Zeeshan A. Convective radiative plane Poiseuille flow of nanofluid through porous medium with slip: an application of Stefan blowing. J Mol Liq. 2019;273:292–304.

    CAS  Google Scholar 

  32. Ghadikolaei SS, Gholinia M, Hoseini ME, Ganji DD. Natural convection MHD flow due to \(\text{MoS}_{2}\)-Ag nanoparticles suspended in \(\text{C}_{2}\text{H} _{6}\text{O}_{2}\)\(\text{H}_{2}\text{O}\) hybrid base fluid with thermal radiation. J Taiwan Inst Chem Eng. 2019;97:12–23.

    CAS  Google Scholar 

  33. Dogonchi AS, Waqas M, Seyyedi SM, Hashemi-Tilehnoee M, Ganji DD. CVFEM analysis for \(\text{Fe}_{3}\text{O}_{4}\)-\(\text{H}_{2}\text{O}\) nanofluid in an annulus subject to thermal radiation. Int J Heat Mass Transf. 2019;132:473–83.

    CAS  Google Scholar 

  34. Bhatti MM, Sheikholeslami M, Shahid A, Hassan M, Abbas T. Entropy generation on the interaction of nanoparticles over a stretched surface with thermal radiation. Colloids Surf A Physicochem Eng Asp. 2019;570:368–76.

    CAS  Google Scholar 

  35. Kumar R, Kumar R, Sheikholeslami M, Chamkha AJ. Irreversibility analysis of the three dimensional flow of carbon nanotubes due to nonlinear thermal radiation and quartic chemical reactions. J Mol Liq. 2019;274:379–92.

    CAS  Google Scholar 

  36. Uddin I, Akhtar R, Zhiyu Z, Islam S, Shoaib M, Raja MAZ. Numerical treatment for Darcy–Forchheimer flow of Sisko nanomaterial with nonlinear thermal radiation by Lobatto IIIA technique. Math Prob Eng. 2019;8974572:15.

    Google Scholar 

  37. Hayat T, Akram J, Zahir H, Alsaedi A. Peristaltic motion of Sisko fluid in an inclined asymmetric tapered channel with nonlinear radiation. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08088-w.

    Article  Google Scholar 

  38. Forchheimer P. Wasserbewegung durch boden. Zeitschrift Ver D Ing. 1901;45:1782–8.

    Google Scholar 

  39. Muskat M. The flow of homogeneous fluids through porous media. Ann Arbor: Edwards; 1946.

    Google Scholar 

  40. Seddeek MA. Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media. J Colloid Interface Sci. 2006;293:137–42.

    CAS  PubMed  Google Scholar 

  41. Sadiq MA, Hayat T. Darcy–Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet. Results Phys. 2016;6:884–90.

    Google Scholar 

  42. Bakar SA, Arifin NM, Nazar R, Ali FM, Pop I. Forced convection boundary layer stagnation-point flow in Darcy–Forchheimer porous medium past a shrinking sheet. Frontiers Heat Mass Transf. 2016;7:38.

    Google Scholar 

  43. Hayat T, Muhammad T, Al-Mezal S, Liao SJ. Darcy–Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux. Int J Numer Methods Heat Fluid Flow. 2016;26:2355–69.

    Google Scholar 

  44. Umavathi JC, Ojjela O, Vajravelu K. Numerical analysis of natural convective flow and heat transfer of nanofluids in a vertical rectangular duct using Darcy–Forchheimer–Brinkman model. Int J Thermal Sci. 2017;111:511–24.

    CAS  Google Scholar 

  45. Hassan M, Marin M, Alsharif A, Ellahi R. Convection heat transfer flow of nanofluid in a porous medium over wavy surface. Phys Lett A. 2018;382:2749–53.

    CAS  Google Scholar 

  46. Hayat T, Aziz A, Muhammad T, Alsaedi A. Numerical simulation for Darcy–Forchheimer three-dimensional rotating flow of nanofluid with prescribed heat and mass flux conditions. J Therm Anal Calorim. 2019;136:2087–95.

    CAS  Google Scholar 

  47. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT-\(\text{Fe}_{3}\text{O}_{4}/\text{water}\) hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2019;135:3029–42.

    CAS  Google Scholar 

  48. Asadollahi Esfahani JA, Ellahi R. On evacuation liquid coatings from a diffusive oblique fin in micro/mini-channels: an application of condensation cooling process. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08243-3.

    Article  Google Scholar 

  49. Liao SJ. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul. 2010;15:2003–16.

    Google Scholar 

  50. Ellahi R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Modell. 2013;37:1451–67.

    Google Scholar 

  51. Malvandi A, Hedayati F, Domairry G. Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. J Thermodyn. 2013;2013:764827.

    Google Scholar 

  52. Abbasbandy S, Hayat T, Alsaedi A, Rashidi MM. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. Int J Numer Methods Heat Fluid Flow. 2014;24:390–401.

    Google Scholar 

  53. Turkyilmazoglu M. An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat. 2016;30:1633–50.

    Google Scholar 

  54. Hayat T, Aziz A, Muhammad T, Alsaedi A. Darcy–Forchheimer three-dimensional flow of Williamson nanofluid over a convectively heated nonlinear stretching surface. Commun Theor Phys. 2017;68:387.

    CAS  Google Scholar 

  55. Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy–Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2019;136:1769–79.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farwa Haider.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Haider, F., Muhammad, T. et al. Darcy–Forchheimer three-dimensional flow of carbon nanotubes with nonlinear thermal radiation. J Therm Anal Calorim 140, 2711–2720 (2020). https://doi.org/10.1007/s10973-019-09016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09016-8

Keywords

Navigation