Skip to main content
Log in

A study on kinetics of ignition reaction of B4C/KNO3 and B4C/KClO4 pyrotechnic smoke compositions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Presented herein is a study on the ignition reaction kinetics and mechanism of B4C/KNO3 and B4C/KClO4 pyrotechnic smoke compositions using the non-isothermal thermogravimetry and differential scanning calorimetry techniques. The pyrotechnics in oxygen balance of − 10%, − 20% and − 30% were prepared for the experiments. The results of measurements showed that the pyrotechnics in oxygen balance of − 20% had the highest enthalpy. The activation energy (Ea) of ignition reactions was calculated by using Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS) methods. The Ea values of B4C/KNO3 and B4C/KClO4 were 139.5 and 214.6 kJ mol−1 calculated by OFW method, and 129.3 and 210.7 kJ mol−1 by KAS method. The differential and integral reaction mechanism functions of B4C/KNO3 and B4C/KClO4 were determined, respectively, by z(α) master plots method, f1(α) = 2(1 − α)[− ln(1 − α)]1/2, g1(α) = [− ln(1 − α)]1/2, and f2(α) = 3(1 − α)[− ln(1 − α)]2/3, g2(α) = [− ln(1 − α)]1/3. The pre-exponential factors, lnA = 11.6 and 22.3 min−1, were obtained by the intercept of KAS method for ignition reaction of B4C/KNO3 and B4C/KClO4 pyrotechnics. Based on the results, the burning rates, thermal sensitivities and application methods of B4C/KNO3 and B4C/KClO4 were predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eaton JC, Lopinto RJ, Palmer WG. Health effects of hexachloroethane (HC) smoke; accession number ADA277838; Defense Technical Information Center (DTIC): Fort Belvoir, VA, 1994; pp 1–60.

  2. Shaw AP, Poret JC, Gilbert RA, et al. Development and performance of boron carbide-based smoke compositions. Propellants Explos Pyrotech. 2013;38(5):622–8.

    Article  CAS  Google Scholar 

  3. Shaw AP, Diviacchi G, Black EL, et al. Versatile boron carbide-based visual obscurant compositions for smoke munitions. ACS Sustain Chem Eng. 2015;3(6):150423154904007.

    Article  Google Scholar 

  4. Thévenot F. Boron carbide—a comprehensive review. J Eur Ceram Soc. 1990;6(4):205–25.

    Article  Google Scholar 

  5. Reddy RG, Wang T, Mantha D. Thermodynamic properties of potassium nitrate–magnesium nitrate compound [2KNO3·Mg(NO3)2]. Thermochim Acta. 2012;531:6–11.

    Article  CAS  Google Scholar 

  6. Benenson W, Harris JW, Stocker H et al. Handbook of physics; 2002. ISBN 978-0387952697.

  7. Pan GP, Yang S. Pyrotechnic technology. Nanjing: Initiators and Pyrotechnics Technology Committee; 1995.

    Google Scholar 

  8. Wendlandt WW. Thermal analysis. 3rd ed. Hoboken: Wiley; 1986.

    Google Scholar 

  9. Vyazovkin S, Burnham AK, Criado JM, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520(1–2):1–19.

    Article  CAS  Google Scholar 

  10. Pouretedal HR, Loh Mousavi S. Study of the ratio of fuel to oxidant on the kinetic of ignition reaction of Mg/Ba(NO3)2 and Mg/Sr(NO3)2 pyrotechnics by non-isothermal TG/DSC technique. J Therm Anal Calorim. 2018;132:1307–15.

    Article  CAS  Google Scholar 

  11. Vyazovkin S. Alternative description of process kinetics. Thermochim Acta. 1992;211(1):181–7.

    Article  CAS  Google Scholar 

  12. Flynn JH. The ‘temperature integral’—its use and abuse. Thermochim Acta. 1997;300(1–2):83–92.

    Article  CAS  Google Scholar 

  13. Miyata K. Combustion of boron-pyrotechnics. In: Joint propulsion conference and exhibit. 2013.

  14. El-Awad AM. Catalytic effect of some chromites on the thermal decomposition of KClO4 mechanistic and non-isothermal kinetic studies. J Therm Anal Calorim. 2000;61(1):197–208.

    Article  CAS  Google Scholar 

  15. Liu PJ, Liu LL, He GQ. Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron. J Therm Anal Calorim. 2016;124(3):1587–93.

    Article  CAS  Google Scholar 

  16. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881.

    Article  CAS  Google Scholar 

  17. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bureau Stand Part A. 1966;70:487.

    Article  CAS  Google Scholar 

  18. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702–6.

    Article  CAS  Google Scholar 

  19. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep (Chiba Inst Technol) Sci Technol. 1971;16:22–31.

    Google Scholar 

  20. Malek J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.

    Article  CAS  Google Scholar 

  21. Brown ME. Introduction to thermal analysis. 2nd ed. Dodrecht: Kluwer; 2001.

    Google Scholar 

  22. Pouretedal HR, Ebadpour R. Application of Non-isothermal thermogravimetric method to interpret the decomposition kinetics of NaNO3, KNO3, and KClO4. Int J Thermophys. 2014;35(5):942–51.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support for this work was provided by the National Natural Science Foundation of China (Project No. 51676100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhu, C., Xie, X. et al. A study on kinetics of ignition reaction of B4C/KNO3 and B4C/KClO4 pyrotechnic smoke compositions. J Therm Anal Calorim 140, 2317–2324 (2020). https://doi.org/10.1007/s10973-019-09015-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09015-9

Keywords

Navigation