Skip to main content
Log in

A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Convection heat transfer in cavities has attracted much attention from researchers. Many kinds of nanofluids have exhibited non-Newtonian behavior and been employed as heat transfer fluids in cavities. In a non-Newtonian fluid, shear stress and strain do not have a linear relationship. Such fluids do not follow Newton’s law of shear stress. As a result, researchers have used such models as the power-law or Bingham to formulate the behavior of non-Newtonian fluids and provide a numerical solution. In this study, first the non-Newtonian nanofluids were summarized. And then two well-known models, namely the power-law and Bingham models, are introduced, which was followed by empirical studies in non-Newtonian fluids or nanofluids. Then a summary of studies on nanofluids and non-Newtonian fluids inside different types of cavities was provided. Moreover, some tables are presented summarizing numerical studies into cavities containing nanofluids or non-Newtonian fluids and their significant findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim SG, Ok CM, Lee HS. Steady-state extensional viscosity of a linear polymer solution using a differential pressure extensional rheometer on a chip. J Rheol. 2018;62:1261–70.

    CAS  Google Scholar 

  2. Yang L, Xu J, Du K, Zhang X. Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol. 2017;317:348–69.

    CAS  Google Scholar 

  3. Karimipour A, Ghasemi S, Darvanjooghi MHK, Abdollahi A. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int Commun Heat Mass Transf. 2018;92:90–9.

    CAS  Google Scholar 

  4. Yang L, Hu Y. Toward TiO2 nanofluids—Part 1: preparation and properties. Nanoscale Res Lett. 2017;12:417.

    PubMed  PubMed Central  Google Scholar 

  5. Nadooshan AA, Esfe MH, Afrand M. Evaluation of rheological behavior of 10W40 lubricant containing hybrid nano-material by measuring dynamic viscosity. Phys E Low-Dimens Syst Nanostruct. 2017;92:47–54.

    Google Scholar 

  6. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018;790:1–48.

    Google Scholar 

  7. Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S, Afrand M. A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. Int J Heat Mass Transf. 2018;127:997–1012.

    CAS  Google Scholar 

  8. Esfe MH, Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim. 2015;119:1817–24.

    Google Scholar 

  9. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    CAS  Google Scholar 

  10. Toghraie D, Alempour SM, Afrand M. Experimental determination of viscosity of water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    CAS  Google Scholar 

  11. Hajatzadeh Pordanjani A, Aghakhani S, Afrand M, Mahmoudi B, Mahian O, Wongwises S. An updated review on application of nanofluids in heat exchangers for saving energy. Energy Convers Manag. 2019;198:111886.

    CAS  Google Scholar 

  12. Yang L, Du K, Niu X, Zhang Y, Li Y. Numerical investigation of ammonia falling film absorption outside vertical tube with nanofluids. Int J Heat Mass Transf. 2014;79:241–50.

    CAS  Google Scholar 

  13. Yang L, Hu Y. Toward TiO2 nanofluids—Part 2: applications and challenges. Nanoscale Res Lett. 2017;12:446.

    PubMed  PubMed Central  Google Scholar 

  14. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018;791:1–59.

    Google Scholar 

  15. Selimefendigil F, Öztop HF. Corrugated conductive partition effects on MHD free convection of CNT-water nanofluid in a cavity. Int J Heat Mass Transf. 2019;129:265–77.

    CAS  Google Scholar 

  16. Shahsavani E, Afrand M, Kalbasi R. Using experimental data to estimate the heat transfer and pressure drop of non-Newtonian nanofluid flow through a circular tube: applicable for use in heat exchangers. Appl Therm Eng. 2018;129:1573–81.

    CAS  Google Scholar 

  17. Naik BAK, Vinod AV. Heat transfer enhancement using non-Newtonian nanofluids in a shell and helical coil heat exchanger. Exp Therm Fluid Sci. 2018;90:132–42.

    CAS  Google Scholar 

  18. Bahiraei M, Godini A, Shahsavar A. Thermal and hydraulic characteristics of a minichannel heat exchanger operated with a non-Newtonian hybrid nanofluid. J Taiwan Inst Chem Eng. 2018;84:149–61.

    CAS  Google Scholar 

  19. Pop I, Sheremet M, Flow F. “Free convection in a square cavity filled with a Casson fluid under the effects of thermal radiation and viscous dissipation. Int J Numer Methods Heat Fluid Flow. 2017;27(10):2318–32.

    Google Scholar 

  20. Reddy GJ, Kethireddy B, Umavathi JC, Sheremet MA. “Heat flow visualization for unsteady Casson fluid past a vertical slender hollow cylinder. Therm Sci Eng Progress. 2018;5:172–81.

    Google Scholar 

  21. Arsenyeva O, Tran J, Piper M, Kenig E. An approach for pillow plate heat exchangers design for single-phase applications. Appl Therm Eng. 2019;147:579–91.

    Google Scholar 

  22. Reddy GJ, Kumar M, Umavathi J, Sheremet MA. Transient entropy analysis for the flow of a second-grade fluid over a vertical cylinder. Can J Phys. 2018;96(9):978–91.

    CAS  Google Scholar 

  23. Yang L, Du K, Zhang X, A. theoretical investigation of thermal conductivity of nanofluids with particles in cylindrical shape by anisotropy analysis. Powder technol. 2017;314:328–38.

    CAS  Google Scholar 

  24. Ghasemian A, Dinarvand S, Adamian A, Sheremet MA. “Unsteady general three-dimensional stagnation point flow of a Maxwell/Buongiorno non-Newtonian nanofluid. J Nanofluids. 2019;8(7):1544–59.

    Google Scholar 

  25. D. S. Loenko, A. Shenoy, and M. A. J. E. Sheremet, “Natural Convection of Non-Newtonian Power-Law Fluid in a Square Cavity with a Heat-Generating Element,” vol. 12, no. 11, p. 2149, 2019.

  26. Rahimi A, Kasaeipoor A, Malekshah EH, Far AS, Sepehr M. “Heat transfer intensification using CuO-water nanofluid in a finned capsule-shaped heat exchanger using lattice Boltzmann method. Chem Eng Process Process Intensif. 2018;127:17–27.

    CAS  Google Scholar 

  27. Yang L, Ji W, Zhang Z, Jin X. Thermal conductivity enhancement of water by adding graphene Nano-sheets: consideration of particle loading and temperature effects. Int Commun Heat Mass Transf. 2019;190:104355.

  28. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131(3):2027–39.

    CAS  Google Scholar 

  29. Ahmadi MH, Ahmadi MA, Nazari MA, Mahian O, Ghasempour R. A proposed model to predict thermal conductivity ratio of Al2O3/EG nanofluid by applying least squares support vector machine (LSSVM) and genetic algorithm as a connectionist approach. J Therm Anal Calorim. 2019;135(1):271–81.

    CAS  Google Scholar 

  30. Yang L, Du K. An optimizing method for preparing natural refrigerant: ammonia-water nanofluids. Integr Ferroelectr. 2013;147(1):24–33.

    CAS  Google Scholar 

  31. Yang L, Huang JN, Ji W, Mao M. Investigations of a new combined application of nanofluids in heat recovery and air purification. Powder Technol. 2019. https://doi.org/10.1016/j.powtec.2019.10.053.

    Article  Google Scholar 

  32. Yang L, Ji W, Huang JN, Xu G. An updated review on the influential parameters on thermal conductivity of nano-fluids. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111780.

    Article  Google Scholar 

  33. Rashidi S, Karimi N, Mahian O, Esfahani J. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135(2):1145–59.

    CAS  Google Scholar 

  34. Shadloo MS, Mahian O. Recent advances in heat and mass transfer. J Therm Anal Calorim. 2019;135(3):1611–5.

    Google Scholar 

  35. Yang L, Chen X, Xu M, Du K. Roles of surfactants and particle shape in the enhanced thermal conductivity of TiO2 nanofluids. AIP Adv. 2016;6:095104.

    Google Scholar 

  36. Yang L, Mao M, Huang JN, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    CAS  Google Scholar 

  37. Kao M-J, Chang H, Wu Y-Y, Tsung T-T, Lin H-M. Producing aluminum-oxide brake nanofluids using plasma charging system. J Chin Soc Mech Eng. 2007;28:123–31.

    Google Scholar 

  38. Namburu P, Kulkarni D, Dandekar A, Das D. Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett. 2007;2:67–71.

    CAS  Google Scholar 

  39. Yang J-C, Li F-C, Zhou W-W, He Y-R, Jiang B-C. Experimental investigation on the thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids. Int J Heat Mass Transf. 2012;55:3160–6.

    CAS  Google Scholar 

  40. Mosavian MH, Heris SZ, Etemad SG, Esfahany MN. Heat transfer enhancement by application of nano-powder. J Nanopart Res. 2010;12:2611–9.

    CAS  Google Scholar 

  41. Garg J, Poudel B, Chiesa M, Gordon J, Ma J, Wang J, et al. Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys. 2008;103:074301.

    Google Scholar 

  42. M. Behi, S. A. Mirmohammadi, “Investigation on thermal conductivity, viscosity and stability of nanofluids,” Master of Science Thesis EGI-2012, Royal Institute of Technology (KTH), School of Industrial Engineering and Management, Department of Energy Technology, Division of Applied Thermodynamics and Refrigeration, Stockholm, Sweden, 2012.

  43. Yang Y, Grulke EA, Zhang ZG, Wu G. Thermal and rheological properties of carbon nanotube-in-oil dispersions. J Appl Phys. 2006;99:114307.

    Google Scholar 

  44. Khodadadi H, Toghraie D, Karimipour A. Effects of nanoparticles to present a statistical model for the viscosity of MgO-Water nanofluid. Powder Technol. 2019;342:166–80.

    CAS  Google Scholar 

  45. Kinloch IA, Roberts SA, Windle AH. A rheological study of concentrated aqueous nanotube dispersions. Polymer. 2002;43:7483–91.

    CAS  Google Scholar 

  46. G. Ko, K. Heo, K. Lee, M. Choi, “Thermal and flow characteristics of carbon nanotube nanofluids. In: PARTEC 2007–congress on particle technology, Nürnberg, Germany, 2007.

  47. Vakili-Nezhaad G, Dorany A. Effect of single-walled carbon nanotube on the viscosity of lubricants. Energy Procedia. 2012;14:512–7.

    CAS  Google Scholar 

  48. Ruan B, Jacobi AM. Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res Lett. 2012;7:127.

    PubMed  PubMed Central  Google Scholar 

  49. Eshgarf H, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Thermal Fluid Sci. 2016;76:221–7.

    CAS  Google Scholar 

  50. Sundar LS, Ramana EV, Singh M, De Sousa A. Viscosity of low volume concentrations of magnetic Fe3O4 nanoparticles dispersed in ethylene glycol and water mixture. Chem Phys Lett. 2012;554:236–42.

    Google Scholar 

  51. Esfe MH, Afrand M, Yan W-M, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transf. 2016;76:133–8.

    Google Scholar 

  52. Phuoc TX, Massoudi M, Chen R-H. Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci. 2011;50:12–8.

    CAS  Google Scholar 

  53. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.

    CAS  Google Scholar 

  54. Maillaud L, Poulin P, Pasquali M, Zakri CC. Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes. Langmuir. 2015;31:5928–34.

    CAS  PubMed  Google Scholar 

  55. Nguyen C, Desgranges F, Galanis N, Roy G, Maré T, Boucher S, et al. Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? Int J Therm Sci. 2008;47:103–11.

    CAS  Google Scholar 

  56. Abu-Nada E, Oztop HF. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int J Heat Fluid Flow. 2009;30:669–78.

    CAS  Google Scholar 

  57. Namburu PK, Kulkarni DP, Misra D, Das DK. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Thermal Fluid Sci. 2007;32:397–402.

    CAS  Google Scholar 

  58. Kulkarni DP, Das DK, Chukwu GA. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). J Nanosci Nanotechnol. 2006;6:1150–4.

    CAS  PubMed  Google Scholar 

  59. Nadooshan AA, Eshgarf H, Afrand M. Measuring the viscosity of Fe3O4-MWCNTs/EG hybrid nanofluid for evaluation of thermal efficiency: Newtonian and non-Newtonian behavior. J Mol Liq. 2018;253:169–77.

    Google Scholar 

  60. Sahoo BC, Vajjha RS, Ganguli R, Chukwu GA, Das DK. Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations. Pet Sci Technol. 2009;27:1757–70.

    CAS  Google Scholar 

  61. Vajjha RS. Measurements of thermophysical properties of nanofluids and computation of heat transfer characteristics. Alaska: University of Alaska Fairbanks; 2018.

    Google Scholar 

  62. Kefayati GR. Simulation of heat transfer and entropy generation of MHD natural convection of non-Newtonian nanofluid in an enclosure. Int J Heat Mass Transf. 2016;92:1066–89.

    Google Scholar 

  63. Kefayati GR. Mixed convection of non-Newtonian nanofluids flows in a lid-driven enclosure with sinusoidal temperature profile using FDLBM. Powder Technol. 2014;266:268–81.

    CAS  Google Scholar 

  64. Kefayati GR. FDLBM simulation of entropy generation due to natural convection in an enclosure filled with non-Newtonian nanofluid. Powder Technol. 2015;273:176–90.

    CAS  Google Scholar 

  65. Kefayati GR. FDLBM simulation of magnetic field effect on mixed convection in a two sided lid-driven cavity filled with non-Newtonian nanofluid. Powder Technol. 2015;280:135–53.

    CAS  Google Scholar 

  66. Kefayati GHR. Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol. 2016;299:127–49.

    CAS  Google Scholar 

  67. Kefayati GHR, Che Sidik NA. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 2017;305:679–703.

    CAS  Google Scholar 

  68. Kefayati GHR, Tang H. Simulation of natural convection and entropy generation of MHD non-Newtonian nanofluid in a cavity using Buongiorno’s mathematical model. Int J Hydrog Energy. 2017;42:17284–327.

    CAS  Google Scholar 

  69. Kefayati GR. Mesoscopic simulation of mixed convection on non-Newtonian nanofluids in a two sided lid-driven enclosure. Adv Powder Technol. 2015;26:576–88.

    CAS  Google Scholar 

  70. Wang L, Huang C, Yang X, Chai Z, Shi B. “Effects of temperature-dependent properties on natural convection of power-law nanofluids in rectangular cavities with sinusoidal temperature distribution. Int J Heat Mass Transf. 2019;128:688–99.

    CAS  Google Scholar 

  71. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-Shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  72. Siavashi M, Rostami A. “Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689–703.

    Google Scholar 

  73. Kefayati GR. FDLBM simulation of entropy generation in double diffusive natural convection of power-law fluids in an enclosure with Soret and Dufour effects. Int J Heat Mass Transf. 2015;89:267–90.

    Google Scholar 

  74. Huang C-J. Influence of non-Darcy and MHD on free convection of non-Newtonian fluids over a vertical permeable plate in a porous medium with soret/dufour effects and thermal radiation. Int J Therm Sci. 2018;130:256–63.

    Google Scholar 

  75. Kefayati GR. Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part I: Study of fluid flow, heat and mass transfer). Int J Heat Mass Transf. 2016;94:539–81.

    Google Scholar 

  76. Kefayati GR. Simulation of double diffusive natural convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects (Part II: Entropy generation). Int J Heat Mass Transf. 2016;94:582–624.

    Google Scholar 

  77. Chen C-L, Chang S-C, Chen C-Y. Lattice Boltzmann simulation of convective heat transfer of non-Newtonian fluids in impeller stirred tank. Appl Math Model. 2017;46:519–35.

    Google Scholar 

  78. Celli M, Barletta A. Onset of convection in a non-Newtonian viscous flow through a horizontal porous channel. Int J Heat Mass Transf. 2018;117:1322–30.

    Google Scholar 

  79. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Transient natural convective heat transfer in a trapezoidal cavity filled with non-Newtonian nanofluid with sinusoidal boundary conditions on both sidewalls. Powder Technol. 2017;308:214–34.

    CAS  Google Scholar 

  80. Kefayati GR. “FDLBM simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a linearly heated cavity. Powder Technol. 2014;256:87–99.

    CAS  Google Scholar 

  81. Qi Z, Kuang S, Yu A. Lattice Boltzmann investigation of non-Newtonian fluid flow through a packed bed of uniform spheres. Powder Technol. 2019;343:225–36.

    CAS  Google Scholar 

  82. Raizah ZAS, Aly AM, Ahmed SE. “Natural convection flow of a power-law non-Newtonian nanofluid in inclined open shallow cavities filled with porous media. Int J Mech Sci. 2018;140:376–93.

    Google Scholar 

  83. Mishra L, Chhabra RP. Natural convection in power-law fluids in a square enclosure from two differentially heated horizontal cylinders. Heat Transf Eng. 2018;39:819–42.

    CAS  Google Scholar 

  84. Kefayati GR. Mesoscopic simulation of magnetic field effect on natural convection of power-law fluids in a partially heated cavity. Chem Eng Res Des. 2015;94:337–54.

    CAS  Google Scholar 

  85. Kefayati GHR. Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (part II: entropy generation). Energy. 2016;107:917–59.

    Google Scholar 

  86. Kefayati GHR. Simulation of double diffusive MHD (magnetohydrodynamic) natural convection and entropy generation in an open cavity filled with power-law fluids in the presence of Soret and Dufour effects (Part I: study of fluid flow, heat and mass transfer). Energy. 2016;107:889–916.

    Google Scholar 

  87. Zhou E, Bayazitoglu Y. Developing laminar natural convection of power-law fluids in vertical open ended channel. Int J Heat Mass Transf. 2019;128:354–62.

    Google Scholar 

  88. Kefayati GR. Simulation of magnetic field effect on natural convection of non-Newtonian power-law fluids in a sinusoidal heated cavity using FDLBM. Int Commun Heat Mass Transf. 2014;53:139–53.

    Google Scholar 

  89. Kefayati GHR. Double-diffusive natural convection and entropy generation of Bingham fluid in an inclined cavity. Int J Heat Mass Transf. 2018;116:762–812.

    Google Scholar 

  90. Kefayati GR, Tang H. “Lattice Boltzmann simulation of viscoplastic fluids on natural convection in an inclined enclosure with inner cold circular/elliptical cylinders (Part I: One cylinder). Int J Heat Mass Transf. 2018;123:1138–62.

    Google Scholar 

  91. Kefayati GHR, Huilgol RR. Lattice Boltzmann Method for simulation of mixed convection of a Bingham fluid in a lid-driven cavity. Int J Heat Mass Transf. 2016;103:725–43.

    Google Scholar 

  92. Kefayati GR, Tang H. Lattice Boltzmann simulation of viscoplastic fluids on natural convection in inclined enclosure with inner cold circular/elliptical cylinders (Part III: Four cylinders). Int J Heat Mass Transf. 2018;123:1182–203.

    Google Scholar 

  93. Kefayati GR, Tang H. Lattice Boltzmann simulation of viscoplastic fluids on natural convection in inclined enclosure with inner cold circular/elliptical cylinders (Part II: Two cylinders). Int J Heat Mass Transf. 2018;123:1163–81.

    Google Scholar 

  94. Kefayati GR, Tang H. MHD mixed convection of viscoplastic fluids in different aspect ratios of a lid-driven cavity using LBM. Int J Heat Mass Transf. 2018;124:344–67.

    Google Scholar 

  95. Huilgol RR, Kefayati GHR. “Natural convection problem in a Bingham fluid using the operator-splitting method. J Non-Newton Fluid Mech. 2015;220:22–32.

    CAS  Google Scholar 

  96. Kefayati GR. Mesoscopic simulation of magnetic field effect on Bingham fluid in an internal flow. J Taiwan Inst Chem Eng. 2015;54:1–10.

    CAS  Google Scholar 

  97. Abu-Nada E, Pop I, Mahian O. A dissipative particle dynamics two-component nanofluid heat transfer model: application to natural convection. Int J Heat Mass Transf. 2019;133:1086–98.

    CAS  Google Scholar 

  98. Keyhani Asl A, Hossainpour S, Rashidi MM, Sheremet MA, Yang Z. Comprehensive investigation of solid and porous fins influence on natural convection in an inclined rectangular enclosure. Int J Heat Mass Transf. 2019;133:729–44.

    Google Scholar 

  99. Sajjadi H, Amiri Delouei A, Sheikholeslami M, Atashafrooz M, Succi S. Simulation of three dimensional MHD natural convection using double MRT Lattice Boltzmann method. Phys A Stat Mech Appl. 2019;515:474–96.

    CAS  Google Scholar 

  100. Sajjadi H, Delouei AA, Atashafrooz M, Sheikholeslami M. Double MRT Lattice Boltzmann simulation of 3-D MHD natural convection in a cubic cavity with sinusoidal temperature distribution utilizing nanofluid. Int J Heat Mass Transf. 2018;126:489–503.

    CAS  Google Scholar 

  101. Revnic C, Abu-Nada E, Grosan T, Pop I. Natural convection in a rectangular cavity filled with nanofluids: effect of variable viscosity. Int J Numer Meth Heat Fluid Flow. 2018;28:1410–32.

    Google Scholar 

  102. Sheremet MA, Pop I, Mahian O. Natural convection in an inclined cavity with time-periodic temperature boundary conditions using nanofluids: application in solar collectors. Int J Heat Mass Transf. 2018;116:751–61.

    CAS  Google Scholar 

  103. F. Selimefendigil, H. F. Öztop, “MHD natural convection and entropy generation in a nanofluid-filled cavity with a conductive partition. In: Exergetic, energetic and environmental dimensions, ed: Elsevier, 2018, pp. 763–778.

  104. Astanina M, Abu-Nada E, Sheremet M. Combined effects of thermophoresis, brownian motion, and nanofluid variable properties on CuO-water nanofluid natural convection in a partially heated square cavity. J Heat Transf. 2018;140:082401.

    Google Scholar 

  105. Goodarzi M, D’Orazio A, Keshavarzi A, Mousavi S, Karimipour A. Develop the nano scale method of lattice Boltzmann to predict the fluid flow and heat transfer of air in the inclined lid driven cavity with a large heat source inside, Two case studies: pure natural convection & mixed convection. Phys A Stat Mech Appl. 2018;509:210–33.

    CAS  Google Scholar 

  106. Miroshnichenko IV, Sheremet MA, Oztop HF, Abu-Hamdeh N. Natural convection of Al 2 O 3/H 2 O nanofluid in an open inclined cavity with a heat-generating element. Int J Heat Mass Transf. 2018;126:184–91.

    CAS  Google Scholar 

  107. Bondareva NS, Sheremet MA, Öztop HF, Abu-Hamdeh N. Transient natural convection in a partially open trapezoidal cavity filled with a water-based nanofluid under the effects of Brownian diffusion and thermophoresis. Int J Numer Meth Heat Fluid Flow. 2018;28:606–23.

    Google Scholar 

  108. Vahabzadeh Bozorg M, Siavashi M. Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int J Mech Sci. 2019;151:842–57.

    Google Scholar 

  109. Huilgol RR, Kefayati GHR. A particle distribution function approach to the equations of continuum mechanics in Cartesian, cylindrical and spherical coordinates: Newtonian and non-Newtonian fluids. J Non-Newton Fluid Mech. 2018;251:119–31.

    CAS  Google Scholar 

  110. Zhuang YJ, Zhu QY. Numerical study on combined buoyancy–Marangoni convection heat and mass transfer of power-law nanofluids in a cubic cavity filled with a heterogeneous porous medium. Int J Heat Fluid Flow. 2018;71:39–54.

    Google Scholar 

  111. Zhuang YJ, Zhu QY. Analysis of entropy generation in combined buoyancy-Marangoni convection of power-law nanofluids in 3D heterogeneous porous media. Int J Heat Mass Transf. 2018;118:686–707.

    CAS  Google Scholar 

  112. Gangawane KM, Manikandan B. Laminar natural convection characteristics in an enclosure with heated hexagonal block for non-Newtonian power-law fluids. Chin J Chem Eng. 2017;25:555–71.

    CAS  Google Scholar 

  113. Moraga NO, Parada GP, Vasco DA. Power law non-Newtonian fluid unsteady conjugate three-dimensional natural convection inside a vessel driven by surrounding air thermal convection in a cavity. Int J Therm Sci. 2016;107:247–58.

    Google Scholar 

  114. A. Raisi. “Natural convection of non-Newtonian fluids in a square cavity with a localized heat source. Stroj Vestn J Mech Eng 2016;62.

  115. Ozoe H, Churchill SW. Hydrodynamic stability and natural convection in Ostwald-de Waele and Ellis fluids: the development of a numerical solution. AIChE J. 1972;18:1196–207.

    CAS  Google Scholar 

  116. Kim GB, Hyun JM, Kwak HS. Transient buoyant convection of a power-law non-Newtonian fluid in an enclosure. Int J Heat Mass Transf. 2003;46:3605–17.

    Google Scholar 

  117. Lamsaadi M, Naimi M, Hasnaoui M. Natural convection heat transfer in shallow horizontal rectangular enclosures uniformly heated from the side and filled with non-Newtonian power-law fluids. Energy Convers Manag. 2006;47:2535–51.

    Google Scholar 

  118. Turan O, Sachdeva A, Chakraborty N, Poole RJ. Laminar natural convection of power-law fluids in a square enclosure with differentially heated side walls subjected to constant temperatures. J Nonnewton Fluid Mech. 2011;166:1049–63.

    CAS  Google Scholar 

  119. Turan O, Sachdeva A, Poole RJ, Chakraborty N. Aspect ratio and boundary conditions effects on laminar natural convection of power-law fluids in a rectangular enclosure with differentially heated side walls. Int J Heat Mass Transf. 2013;60:722–38.

    Google Scholar 

  120. Ternik P, Rudolf R. Laminar natural convection of non-Newtonian nanofluids in a square enclosure with differentially heated side walls. Int J Simul Model. 2013;12:5–16.

    Google Scholar 

  121. I. Vinogradov, L. Khezzar, and D. Siginer. “Heat transfer of non-Newtonian dilatant power-law fluids in square and rectangular cavities,” 2011.

  122. Matin MH, Pop I, Khanchezar S. Natural convection of power-law fluid between two-square eccentric duct annuli. J Nonnewton Fluid Mech. 2013;197:11–23.

    Google Scholar 

  123. Guha A, Pradhan K. Natural convection of non-Newtonian power-law fluids on a horizontal plate. Int J Heat Mass Transf. 2014;70:930–8.

    Google Scholar 

  124. Kefayati GR, Tang H, Chan A, Wang X. “A lattice Boltzmann model for thermal non-Newtonian fluid flows through porous media. Comput Fluids. 2018;176:226–44.

    Google Scholar 

  125. Kefayati GHR. Mixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model. Int J Heat Mass Transf. 2017;108:1481–500.

    Google Scholar 

  126. Kefayati GHR. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in a porous cavity using Buongiorno’s mathematical model,”. Int J Heat Mass Transf. 2017;112:709–44.

    CAS  Google Scholar 

  127. Ashorynejad HR, Javaherdeh K, Sheikholeslami M, Ganji DD. Investigation of the heat transfer of a non-Newtonian fluid flow in an axisymmetric channel with porous wall using Parameterized Perturbation Method (PPM). J Frankl Inst. 2014;351:701–12.

    Google Scholar 

  128. Hosseini M, Sheikholeslami Z, Ganji DD. Non-Newtonian fluid flow in an axisymmetric channel with porous wall. Propuls Power Res. 2013;2:254–62.

    Google Scholar 

  129. Barnoon P, Toghraie D. Numerical investigation of laminar flow and heat transfer of non-Newtonian nanofluid within a porous medium. Powder Technol. 2018;325:78–91.

    CAS  Google Scholar 

  130. Kefayati GR, Tang H. Double-diffusive laminar natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part II: Entropy generation). Int J Heat Mass Transf. 2018;120:683–713.

    Google Scholar 

  131. Reddy JR, Kumar KA, Sugunamma V, Sandeep N. Effect of cross diffusion on MHD non-Newtonian fluids flow past a stretching sheet with non-uniform heat source/sink: a comparative study. Alex Eng J. 2018;57:1829–38.

    Google Scholar 

  132. Kefayati GR, Tang H. MHD thermosolutal natural convection and entropy generation of Carreau fluid in a heated enclosure with two inner circular cold cylinders, using LBM. Int J Heat Mass Transf. 2018;126:508–30.

    Google Scholar 

  133. Kefayati GR, Tang H. Double-diffusive natural convection and entropy generation of Carreau fluid in a heated enclosure with an inner circular cold cylinder (Part I: Heat and mass transfer). Int J Heat Mass Transf. 2018;120:731–50.

    Google Scholar 

  134. Kefayati GR. FDLBM simulation of magnetic field effect on non-Newtonian blood flow in a cavity driven by the motion of two facing lids. Powder Technol. 2014;253:325–37.

    CAS  Google Scholar 

  135. Kefayati GR. Mesoscopic simulation of double-diffusive mixed convection of Pseudoplastic Fluids in an enclosure with sinusoidal boundary conditions. Comput Fluids. 2014;97:94–109.

    Google Scholar 

  136. Kefayati GR. Simulation of vertical and horizontal magnetic fields effects on non-Newtonian power-law fluids in an internal flow using FDLBM. Comput Fluids. 2015;114:12–25.

    Google Scholar 

  137. Sarlak A, Ahmadpour A, Hajmohammadi M. Thermal design improvement of a double-layered microchannel heat sink by using multi-walled carbon nanotube (MWCNT) nanofluids with non-Newtonian viscosity. Appl Therm Eng. 2019;147:205–15.

    CAS  Google Scholar 

  138. Kefayati GR. Simulation of non-Newtonian molten polymer on natural convection in a sinusoidal heated cavity using FDLBM. J Mol Liq. 2014;195:165–74.

    CAS  Google Scholar 

  139. Kefayati GR. Mesoscopic simulation of magnetic field effect on double-diffusive mixed convection of shear-thinning fluids in a two sided lid-driven cavity. J Mol Liq. 2014;198:413–29.

    CAS  Google Scholar 

  140. Kefayati GR. Simulation of magnetic field effect on non-Newtonian blood flow between two-square concentric duct annuli using FDLBM. J Taiwan Inst Chem Eng. 2014;45:1184–96.

    CAS  Google Scholar 

  141. Sheremet MA, Pop I. Natural convection combined with thermal radiation in a square cavity filled with a viscoelastic fluid. Int J Numer Meth Heat Fluid Flow. 2018;28:624–40.

    Google Scholar 

  142. Kefayati GR. Magnetic field effect on heat and mass transfer of mixed convection of shear-thinning fluids in a lid-driven enclosure with non-uniform boundary conditions. J Taiwan Inst Chem Eng. 2015;51:20–33.

    CAS  Google Scholar 

Download references

Acknowledgements

The work of this paper is financially supported by the National Natural Science Foundation of China (51876040) and the Zhishan Youth Scholar Program of SEU. The supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Du, K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Therm Anal Calorim 140, 2033–2054 (2020). https://doi.org/10.1007/s10973-019-08987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08987-y

Keywords

Navigation