Skip to main content
Log in

The gaseous products characterization of the pyrolysis process of various agricultural residues using TGA–DSC–MS techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Slow pyrolysis characteristics of agricultural residue feedstocks (corn brakes, wheat straw, and hazelnut shell) were investigated by simultaneous thermal analysis (STA–TG–DTG–DSC), coupled with mass spectrometry (MS). Thermal decomposition of agricultural residues was divided into three stages, corresponding to removal of water, devolatilization, and formation of bio-char. It was found that differences in thermal behavior of samples are due to differences in their composition. The MS results showed that H2, CH4, H2O, CO2 (C3H8), CO, and C2H6 were the main gaseous products released during pyrolysis. It was shown that hazelnut shells could be a good combustion fuel, since during its pyrolysis at high temperature, more gaseous products compared to other systems are very favored. For hazelnut shell pyrolysis, the CO2 can be used on the large scale for the production of CO-rich syngas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ohlström M, Mäkinen T, Laurikko J, Pipatti R. New concepts for biofuels in transportation: biomass-based methanol production and reduced emissions in advanced vehicles. VTT Technical Research Centre of Finland; 2001. p. 97.

  2. Saxena RC, Adhikari DK, Goyal HB. Biomass-based energy fuel through biochemical routes: a review. Renew Sustain Energy Rev. 2009;13(1):167–78. https://doi.org/10.1016/j.rser.2007.07.011.

    Article  CAS  Google Scholar 

  3. Maniatis K. Progress in biomass gasification: an overview. In: Bridgwater AV, editor. Progress in thermochemical biomass conversion. London: Blackwell; 2001. pp. 1–31.

  4. Faaij A. Modern biomass conversion technologies. Mitig Adapt Strat Glob Change. 2006;11(2):343–75. https://doi.org/10.1007/s11027-005-9004-7.

    Article  Google Scholar 

  5. Anwar Z, Gulfraz M, Irshad M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci. 2014;7(2):163–73. https://doi.org/10.1016/j.jrras.2014.02.003.

    Article  CAS  Google Scholar 

  6. Garcia-Perez M, Lewis T, Kruger C. Methods for producing biochar and advanced biofuels in Washington State. Pullman: Washington State University; 2010. p. 137.

  7. Czajczyńska D, Anguilano L, Ghazal H, Krzyżyńska R, Reynolds AJ, Spencer N, Jouhara H. Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Prog. 2017;3:171–97. https://doi.org/10.1016/j.tsep.2017.06.003.

    Article  Google Scholar 

  8. Jayaraman K, Gökalp I. Pyrolysis, combustion and gasification characteristics of miscanthus and sewage sludge. Energ Convers Manag. 2015;89:83–91. https://doi.org/10.1016/j.enconman.2014.09.058.

    Article  CAS  Google Scholar 

  9. Alipour Moghadam R, Yusup S, Azlina W, Nehzati S, Tavasoli A. Investigation on syngas production via biomass conversion through the integration of pyrolysis and air–steam gasification processes. Energ Convers Manag. 2014;87:670–5. https://doi.org/10.1016/j.enconman.2014.07.065.

    Article  CAS  Google Scholar 

  10. Chaudhari ST, Dalai AK, Bakhshi NN. Production of hydrogen and/or syngas (H2 + CO) via steam gasification of biomass-derived chars. Energy Fuels. 2003;17(4):1062–7. https://doi.org/10.1021/ef030017d.

    Article  CAS  Google Scholar 

  11. Boll W, Hochgesand G, Higman C, Supp E, Kalteier P, Müller W-D, Kriebel M, Schlichting H, Tanz H. Gas production, 3. Gas treating. In: Chadwick SS, editor. Ullmann’s encyclopedia of industrial chemistry. London: Wiley; 2011.

  12. Solid biofuels. Sample preparation. In: BSI British standards.

  13. Solid biofuels. Determination of moisture content. Oven dry method. In: BSI British standards.

  14. Solid biofuels. Determination of total content of carbon, hydrogen and nitrogen. Instrumental methods. In: BSI British standards.

  15. Solid biofuels. Fuel specifications and classes. In: BSI British standards.

  16. Solid biofuels. Determination of calorific value. In: BSI British standards.

  17. Jianguo X, Zhaolong W. The study of pyrolysis property of pulverized coal by thermogravimetry. J Combust Sci Technol. 1999;5(2):175–9.

    Article  CAS  Google Scholar 

  18. Inglesby MK, Wood DF, Gray GM. Effect of chemical fractionation treatments on silicon dioxide content and distribution in oryza sativa. In: Stokke DD, Groom LH, editors. Characterization of the cellulosic cell wall. London: Blackwell; 2006. pp. 192–212.

  19. Demirbas A. Hydrogen from mosses and algae via pyrolysis and steam gasification. Energy Sour Part A Recovery Util Environ Eff. 2009;32(2):172–9. https://doi.org/10.1080/15567030802464388.

    Article  CAS  Google Scholar 

  20. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2006;20(3):848–89. https://doi.org/10.1021/ef0502397.

    Article  CAS  Google Scholar 

  21. Gravalos I, Xyradakis P, Kateris D, Gialamas T, Bartzialis D, Giannoulis K. An experimental determination of gross calorific value of different agroforestry species and bio-based industry residues. Nat Resour. 2016;7(01):57.

    CAS  Google Scholar 

  22. James A, Thring R, Helle S, Ghuman H. Ash management review—applications of biomass bottom ash. Energies. 2012;5(12):3856–73. https://doi.org/10.3390/en5103856.

    Article  CAS  Google Scholar 

  23. McKendry P. Energy production from biomass (part 1): overview of biomass. Biores Technol. 2002;83(1):37–46. https://doi.org/10.1016/s0960-8524(01)00118-3.

    Article  CAS  Google Scholar 

  24. Conesa JA, Caballero J, Marcilla A, Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim Acta. 1995;254:175–92. https://doi.org/10.1016/0040-6031(94)02102-t.

    Article  CAS  Google Scholar 

  25. Caballero JA, Conesa JA, Font R, Marcilla A. Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrol. 1997;42(2):159–75. https://doi.org/10.1016/s0165-2370(97)00015-6.

    Article  CAS  Google Scholar 

  26. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7. https://doi.org/10.1016/j.apenergy.2011.12.056.

    Article  CAS  Google Scholar 

  27. Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    Article  CAS  Google Scholar 

  28. Sonobe T, Pipatmanomai S, Worasuwannarak N. Pyrolysis characteristics of Thai-agricultural residues of rice straw, rice husk, and corncob by TG–MS technique and kinetic analysis. In: Proceedings of the 2nd joint international conference on “sustainable energy and environment (SEE’06)”; 2006.

  29. Jia C, Chen J, Liang J, Song S, Liu K, Jiang A, Wang Q. Pyrolysis characteristics and kinetic analysis of rich husk. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08366-7.

    Article  Google Scholar 

  30. Duan F, Zhang L, Sun X, Huang Y. Comparison of thermal behavior for modified calcium magnesium acetate blended separately with peanutt shell and sewage sludge at different atmospheres. J Therm Anal Calorim. 2017;127(3):2417–25. https://doi.org/10.1007/s10973-016-5829-4.

    Article  CAS  Google Scholar 

  31. Soncini RM, Means NC, Weiland NT. Co-pyrolysis of low rank coals and biomass: product distributions. Fuel. 2013;112:74–82. https://doi.org/10.1016/j.fuel.2013.04.073.

    Article  CAS  Google Scholar 

  32. Gómez CJ, Mészáros E, Jakab E, Velo E, Puigjaner L. Thermogravimetry/mass spectrometry study of woody residues and an herbaceous biomass crop using PCA techniques. J Anal Appl Pyrol. 2007;80(2):416–26. https://doi.org/10.1016/j.jaap.2007.05.003.

    Article  CAS  Google Scholar 

  33. Ghalibaf M, Doddapaneni TRKC, Alén R. Pyrolytic behavior of lignocellulosic-based polysaccharides. J Therm Anal Calorim. 2019;137(1):121–31. https://doi.org/10.1007/s10973-018-7919-y.

    Article  CAS  Google Scholar 

  34. Özveren U, Özdoğan ZS. Investigation of the slow pyrolysis kinetics of olive oil pomace using thermo-gravimetric analysis coupled with mass spectrometry. Biomass Bioenergy. 2013;58:168–79. https://doi.org/10.1016/j.biombioe.2013.08.011.

    Article  CAS  Google Scholar 

  35. Jakab E, Faix O, Till F. Thermal decomposition of milled wood lignins studied by thermogravimetry/mass spectrometry. J Anal Appl Pyrol. 1997;40–41:171–86. https://doi.org/10.1016/s0165-2370(97)00046-6.

    Article  Google Scholar 

  36. Akalın MK, Karagöz S. Analytical pyrolysis of biomass using gas chromatography coupled to mass spectrometry. TrAC Trends Anal Chem. 2014;61:11–6. https://doi.org/10.1016/j.trac.2014.06.006.

    Article  CAS  Google Scholar 

  37. Ferdous D, Dalai A, Bej S, Thring R, Bakhshi N. Production of H2 and medium Btu gas via pyrolysis of lignins in a fixed-bed reactor. Fuel Process Technol. 2001;70(1):9–26.

    Article  CAS  Google Scholar 

  38. Widyawati M, Church TL, Florin NH, Harris AT. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. Int J Hydrog Energy. 2011;36(8):4800–13. https://doi.org/10.1016/j.ijhydene.2010.11.103.

    Article  CAS  Google Scholar 

  39. Yang Y, Zhu J, Zhu G, Yang L, Zhu Y. The effect of high temperature on syngas production by immediate pyrolysis of wet sewage sludge with sawdust. J Therm Anal Calorim. 2018;132(3):1783–94. https://doi.org/10.1007/s10973-018-7143-9.

    Article  CAS  Google Scholar 

  40. Wender I. Reactions of synthesis gas. Fuel Process Technol. 1996;48(3):189–297. https://doi.org/10.1016/s0378-3820(96)01048-x.

    Article  CAS  Google Scholar 

  41. Duan W, Yu Q. Thermodynamic analysis of hydrogen-enriched syngas generation coupled with in situ CO2 capture using chemical looping gasification method. J Therm Anal Calorim. 2018;131(2):1671–80. https://doi.org/10.1007/s10973-017-6596-6.

    Article  CAS  Google Scholar 

  42. Skubiszewska-Zięba J, Charmas B, Kołtowski M, Oleszczuk P. Active carbons from waste biochars. Structural and thermal properties. J Therm Anal Calorim. 2017;130(1):15–24. https://doi.org/10.1007/s10973-017-6143-5.

    Article  CAS  Google Scholar 

  43. Guo F, Liu Y, Liu Y, Guo C. Catalytic reforming of tar using corncob char and char-supported potassium catalysts. J Therm Anal Calorim. 2017;130(3):1297–306. https://doi.org/10.1007/s10973-017-6420-3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial support of Ministry of Education, Science and Technological Development of the Republic of Serbia under the Projects 172015 and III42010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojša Manić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janković, B., Manić, N. & Stojiljković, D. The gaseous products characterization of the pyrolysis process of various agricultural residues using TGA–DSC–MS techniques. J Therm Anal Calorim 139, 3091–3106 (2020). https://doi.org/10.1007/s10973-019-08733-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08733-4

Keywords

Navigation