Skip to main content
Log in

Simulating natural convection and entropy generation of a nanofluid in an inclined enclosure under an angled magnetic field with a circular fin and radiation effect

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Natural convection and radiation heat transfer of alumina (Al2O3)–water nanofluid are assessed in an enclosure under a magnetic field in different angles. The enclosure is a cavity at an angle of 45° with respect to the horizon, and a circular quadrant fin with the temperature Th is placed at the bottom corner of the cavity. The right wall is considered at the temperature Tc, and the rest of the walls are defined as adiabatic. The governing equations of flow are solved using algebraic finite volume method and the SIMPLE algorithm. In this work, the entropy generation is also evaluated other than heat transfer. The parameters in the present work include Rayleigh and Hartmann numbers, radiation parameter, magnetic field angle, nanoparticles volume fraction and aspect ratio. The results indicate higher Nusselt number and entropy generation and a lower Bejan number for a higher Rayleigh number and a lower Hartmann number. Addition of 6% of the nanoparticles causes an increase of 10% in the heat transfer rate and 11% in the entropy generation in the absence of radiation. The addition of the radiation mechanism to the enclosure leads to an increase in the heat transfer rate and entropy generation. It is also demonstrated that the vertical magnetic field is more intense than the horizontal magnetic field in the enclosure. With an increase in the fin aspect ratio from 0.3 to 0.7, the rate of heat transfer and entropy generation increases by 36 and 27%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AR:

Aspect ratio

B 0 :

Magnetic field strength

Be :

Bejan number

C p :

Specific heat transfer coefficient (J kg−1 K−1)

G :

Gravity (m s−2)

h :

Convection heat transfer coefficient (W m−2 K−1)

Ha :

Hartmann number \(\left( {Ha = B_{0} l\sqrt {\frac{{\sigma_{{\rm f}} }}{{\rho_{{\rm f}} \vartheta_{{\rm f}} }}} } \right)\)

k :

Thermal conductivity (W m−1 K−1)

l :

Enclosure length (m)

L :

Non-dimensional enclosure length

Nu :

Nusselt number

Nu Y :

Local Nusselt number

Nu M :

Average Nusselt number

p :

Pressure (Pa)

P :

Non-dimensional pressure \(\left( {\bar{P}l^{2} /\rho_{{\rm nf}} \alpha_{{\rm f}}^{2} } \right)\)

Pr :

Prandtl number \((\vartheta_{{\rm f}} /\alpha_{{\rm f}} )\)

r :

Radius of fin (m)

R :

Non-dimensional radius of fin

Rd :

Radiation parameter \(\left( {Rd = \frac{{4\sigma_{{\rm e}} T_{{\rm c}}^{3} }}{{k_{{\rm f}} \beta_{{\rm R}} }}} \right)\)

Ra :

Rayleigh number \(\left( {g\beta_{{\rm f}} l^{3} (T_{{\rm h}} - T_{{\rm c}} )/\alpha_{{\rm f}} \vartheta_{{\rm f}} } \right)\)

S Total :

Total entropy generation

T :

Temperature (K)

u, v :

Velocity components (m s−1)

U, V :

Velocity component \(\left( {U = ul/\alpha_{{\rm f}} , V = vl/\alpha_{{\rm f}} } \right)\)

x, y :

Cartesian coordinates in different directions (m)

X, Y :

Coordinates \(\left( {X = x/l,Y = y/l} \right)\)

β :

Expansion coefficient (1 K−1)

α :

Fluid thermal diffusivity (m2 s−1)

φ :

Volume fraction

ζ :

Irreversibility distribution ratio \(\left( {\zeta = \frac{{\mu_{{\rm nf}} T_{0} }}{{k_{{\rm f}} }}\left( {\frac{{\alpha_{{\rm f}} }}{{L\left( {T_{{\rm h}} - T_{{\rm C}} } \right)}}} \right)^{2} } \right)\)

ω :

Angle of magnetic field (°)

θ :

Temperature

μ :

Dynamic viscosity (W m−1 K−1)

ϑ :

Kinematic viscosity (m2 s−1)

ρ :

Density (kg m−3)

σ :

Electrical conductivity (Ω m)

γ :

Cavity angle (°)

ψ :

Stream function (m2 s−1)

Ψ:

Dimensionless stream function

c :

Cold

h :

Hot

f :

Pure fluid

nf:

Nanofluid

References

  1. Aghakhani S, Ghasemi B, Hajatzadeh Pordanjani A, Wongwises S, Afrand M. Effect of replacing nanofluid instead of water on heat transfer in a channel with extended surfaces under a magnetic field. Int J Numer Methods Heat Fluid Flow. 2019;29:1249–71.

    Google Scholar 

  2. Shahsavani E, Afrand M, Kalbasi R. Using experimental data to estimate the heat transfer and pressure drop of non-Newtonian nanofluid flow through a circular tube: applicable for use in heat exchangers. Appl Therm Eng. 2018;129:1573–81.

    CAS  Google Scholar 

  3. Aghakhani S, Pordanjani AH, Karimipour A, Abdollahi A, Afrand M. Numerical investigation of heat transfer in a power-law non-Newtonian fluid in a C-shaped cavity with magnetic field effect using finite difference lattice Boltzmann method. Comput Fluids. 2018;176:51–67.

    Google Scholar 

  4. Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity and viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.

    CAS  Google Scholar 

  5. Izadi M, Mohebbi R, Delouei AA, Sajjadi H. Natural convection of a magnetizable hybrid nanofluid inside a porous enclosure subjected to two variable magnetic fields. Int J Mech Sci. 2019;151:154–69.

    Google Scholar 

  6. Amiri Delouei A, Sajjadi H, Mohebbi R, Izadi M. Experimental study on inlet turbulent flow under ultrasonic vibration: pressure drop and heat transfer enhancement. Ultrason Sonochem. 2019;51:151–9.

    PubMed  CAS  Google Scholar 

  7. Liu WI, Alsarraf J, Shahsavar A, Rostamzadeh M, Afrand M, Nguyen TK. Impact of oscillating magnetic field on the thermal-conductivity of water–Fe3O4 and water–Fe3O4/CNT ferro-fluids: experimental study. J Magn Magn Mater. 2019;484:258–65.

    CAS  Google Scholar 

  8. Mohebbi R, Izadi M, Sajjadi H, Delouei AA, Sheremet MA. Examining of nanofluid natural convection heat transfer in a Γ-shaped enclosure including a rectangular hot obstacle using the lattice Boltzmann method. Phys A. 2019;526:120831.

    Google Scholar 

  9. Afrand M, Esfe MH, Abedini E, Teimouri H. Predicting the effects of magnesium oxide nanoparticles and temperature on the thermal conductivity of water using artificial neural network and experimental data. Physica E. 2017;87:242–7.

    CAS  Google Scholar 

  10. Yang L, Mao M, Huang JN, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: An experimental study. Powder Technol. 2019;356:335–41.

    Google Scholar 

  11. Asadi A, Asadi M, Rezaniakolaei A, Rosendahl LA, Afrand M, Wongwises S. Heat transfer efficiency of Al2O3-MWCNT/thermal oil hybrid nanofluid as a cooling fluid in thermal and energy management applications: an experimental and theoretical investigation. Int J Heat Mass Transf. 2018;117:474–86.

    CAS  Google Scholar 

  12. Amiri Delouei A, Sajjadi H, Izadi M, Mohebbi R. The simultaneous effects of nanoparticles and ultrasonic vibration on inlet turbulent flow: an experimental study. Appl Therm Eng. 2019;146:268–77.

    CAS  Google Scholar 

  13. Sajjadi H, Amiri Delouei A, Izadi M, Mohebbi R. Investigation of MHD natural convection in a porous media by double MRT lattice Boltzmann method utilizing MWCNT–Fe3O4/water hybrid nanofluid. Int J Heat Mass Transf. 2019;132:1087–104.

    CAS  Google Scholar 

  14. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2019;135:3029–42.

    CAS  Google Scholar 

  15. Sepyani K, Afrand M, Esfe MH. An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J Mol Liq. 2017;236:198–204.

    CAS  Google Scholar 

  16. Shahsavani E, Afrand M, Kalbasi R. Experimental study on rheological behavior of water–ethylene glycol mixture in the presence of functionalized multi-walled carbon nanotubes. J Therm Anal Calorim. 2018;131:1177–85.

    CAS  Google Scholar 

  17. Ranjbarzadeh R, Akhgar A, Musivand S, Afrand M. Effects of graphene oxide-silicon oxide hybrid nanomaterials on rheological behavior of water at various time durations and temperatures: synthesis, preparation and stability. Powder Technol. 2018;335:375–87.

    CAS  Google Scholar 

  18. Haq RU, Aman S. Water functionalized CuO nanoparticles filled in a partially heated trapezoidal cavity with inner heated obstacle: FEM approach. Int J Heat Mass Transf. 2019;128:401–17.

    CAS  Google Scholar 

  19. Saeid NH. Natural convection in a square cavity with discrete heating at the bottom with different fin shapes. Heat Transf Eng. 2018;39:154–61.

    CAS  Google Scholar 

  20. Chen H-T, Lin M-C, Chang J-R. Numerical and experimental studies of natural convection in a heated cavity with a horizontal fin on a hot sidewall. Int J Heat Mass Transf. 2018;124:1217–29.

    Google Scholar 

  21. Hashim I, Alsabery AI, Sheremet MA, Chamkha AJ. Numerical investigation of natural convection of Al2O3–water nanofluid in a wavy cavity with conductive inner block using Buongiorno’s two-phase model. Adv Powder Technol. 2018;30:399–414.

    Google Scholar 

  22. Sheremet MA, Pop I. Effect of local heater size and position on natural convection in a tilted nanofluid porous cavity using LTNE and Buongiorno’s models. J Mol Liq. 2018;266:19–28.

    CAS  Google Scholar 

  23. Khanafer K, AlAmiri A, Bull J. Laminar natural convection heat transfer in a differentially heated cavity with a thin porous fin attached to the hot wall. Int J Heat Mass Transf. 2015;87:59–70.

    Google Scholar 

  24. Pordanjani AH, Vahedi SM, Rikhtegar F, Wongwises S. Optimization and sensitivity analysis of magneto-hydrodynamic natural convection nanofluid flow inside a square enclosure using response surface methodology. J Therm Anal Calorim. 2019;135:1–15.

    Google Scholar 

  25. Selimefendigil F. Natural convection in a trapezoidal cavity with an inner conductive object of different shapes and filled with nanofluids of different nanoparticle shapes. Iran J Sci Technol Trans Mech Eng. 2018;42:169–84.

    Google Scholar 

  26. Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal Calorim. 2019;137(3):997–1019.

    Google Scholar 

  27. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Li Z. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2019;136:2477–85.

    CAS  Google Scholar 

  28. Atashafrooz M, Sheikholeslami M, Sajjadi H, Amiri Delouei A. Interaction effects of an inclined magnetic field and nanofluid on forced convection heat transfer and flow irreversibility in a duct with an abrupt contraction. J Magn Magn Mater. 2019;478:216–26.

    CAS  Google Scholar 

  29. Mansour MA, Siddiqa S, Gorla RSR, Rashad AM. Effects of heat source and sink on entropy generation and MHD natural convection of Al2O3–Cu/water hybrid nanofluid filled with square porous cavity. Therm Sci Eng Prog. 2018;6:57–71.

    Google Scholar 

  30. Malik S, Nayak AK. MHD convection and entropy generation of nanofluid in a porous enclosure with sinusoidal heating. Int J Heat Mass Transf. 2017;111:329–45.

    CAS  Google Scholar 

  31. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474–90.

    CAS  Google Scholar 

  32. Job V, Gunakala S. Unsteady MHD free convection nanofluid flows within a wavy trapezoidal enclosure with viscous and Joule dissipation effects. Numer Heat Transf Part A Appl. 2016;69:421–43.

    CAS  Google Scholar 

  33. Mehryan SAM, Izadi M, Chamkha AJ, Sheremet MA. Natural convection and entropy generation of a ferrofluid in a square enclosure under the effect of a horizontal periodic magnetic field. J Mol Liq. 2018;263:510–25.

    CAS  Google Scholar 

  34. Pordanjani AH, Jahanbakhshi A, Nadooshan AA, Afrand M. Effect of two isothermal obstacles on the natural convection of nanofluid in the presence of magnetic field inside an enclosure with sinusoidal wall temperature distribution. Int J Heat Mass Transf. 2018;121:565–78.

    CAS  Google Scholar 

  35. Bejan A. Entropy generation through heat and fluid flow. Hoboken: Wiley; 1982.

    Google Scholar 

  36. Bejan A. Second law analysis in heat transfer. Energy. 1980;5:720–32.

    Google Scholar 

  37. Dutta S, Biswas AK, Pati S. Natural convection heat transfer and entropy generation inside porous quadrantal enclosure with nonisothermal heating at the bottom wall. Numer Heat Transf Part A Appl. 2018;73:222–40.

    CAS  Google Scholar 

  38. Dutta S, Biswas A. Entropy generation due to natural convection with non-uniform heating of porous quadrantal enclosure—a numerical study. Front Heat Mass Transf (FHMT). 2018;10:1–12.

    Google Scholar 

  39. Salari M, Kasaeipoor A, Malekshah EH. Three-dimensional natural convection and entropy generation in tall rectangular enclosures filled with stratified nanofluid/air fluids. Heat Transf Res. 2018;49:685–702.

    Google Scholar 

  40. Malekpour A, Karimi N, Mehdizadeh A. Magnetohydrodynamics, natural convection, and entropy generation of CuO–water nanofluid in an I-shape enclosure—a numerical study. J Therm Sci Eng Appl. 2018;10:061016.

    Google Scholar 

  41. Pordanjani AH, Aghakhani S, Alnaqi AA, Afrand M. Effect of alumina nano-powder on the convection and the entropy generation of water inside an inclined square cavity subjected to a magnetic field: uniform and non-uniform temperature boundary conditions. Int J Mech Sci. 2018;152:99–117.

    Google Scholar 

  42. Alnaqi AA, Aghakhani S, Pordanjani AH, Bakhtiari R, Asadi A, Tran M-D. Effects of magnetic field on the convective heat transfer rate and entropy generation of a nanofluid in an inclined square cavity equipped with a conductor fin: considering the radiation effect. Int J Heat Mass Transf. 2019;133:256–67.

    CAS  Google Scholar 

  43. Karatas H, Derbentli T. Natural convection and radiation in rectangular cavities with one active vertical wall. Int J Therm Sci. 2018;123:129–39.

    Google Scholar 

  44. Sheikholeslami M, Li Z, Shamlooei M. Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett A. 2018;382:1615–32.

    CAS  Google Scholar 

  45. Lugarini A, Franco AT, Junqueira SLM, Lage JL. Natural convection and surface radiation in a heated wall, C-shaped fracture. J Heat Transf. 2018;140:082501–9.

    Google Scholar 

  46. Wang C-H, Feng Y-Y, Yue K, Zhang X-X. Discontinuous finite element method for combined radiation-conduction heat transfer in participating media. Int Commun Heat Mass Transfer. 2019;108:104287.

    Google Scholar 

  47. Feng Y-Y, Wang C-H. Discontinuous finite element method with a local numerical flux scheme for radiative transfer with strong inhomogeneity. Int J Heat Mass Transf. 2018;126:783–95.

    Google Scholar 

  48. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    CAS  Google Scholar 

  49. Karimipour A. A novel case study for thermal radiation through a nanofluid as a semitransparent medium via discrete ordinates method to consider the absorption and scattering of nanoparticles along the radiation beams coupled with natural convection. Int Commun Heat Mass Transf. 2017;87:256–69.

    CAS  Google Scholar 

  50. Tighchi HA, Sobhani M, Esfahani JA. Effect of volumetric radiation on natural convection in a cavity with a horizontal fin using the lattice Boltzmann method. Eur Phys J Plus. 2018;133:8.

    Google Scholar 

  51. Sobhani M, Tighchi HA, Esfahani JA. Taguchi optimization of combined radiation/natural convection of participating medium in a cavity with a horizontal fin using LBM. Phys A. 2018;509:1062–79.

    CAS  Google Scholar 

  52. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    CAS  Google Scholar 

  53. Sheikholeslami M, Ganji DD. Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann method. Phys A. 2015;417:273–86.

    CAS  Google Scholar 

  54. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.

    CAS  Google Scholar 

  55. Maxwell JC, Thompson JJ. A treatise on electricity and magnetism, vol. 2. Oxford: Clarendon; 1904.

    Google Scholar 

  56. Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    CAS  Google Scholar 

  57. Patankar S. Numerical heat transfer and fluid flow. Boca Raton: CRC Press; 1980.

    Google Scholar 

  58. Krane RJ, Jessee J. Some detailed field measurements for a natural convection flow in a vertical square enclosure. Proc First ASME JSME Therm Eng Joint Conf. 1983;1:323–9.

    Google Scholar 

  59. Ghasemi B, Aminossadati S, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50:1748–56.

    CAS  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the National Key Research and Development Program (2016YFB0100903), the National Science Foundation of China (61503284), the Tianjin Key R&D Program (18YFZCGX00380), and Tianjin Science and Technology Major Project for Artificial Intelligence (17ZXRGGX00070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Afrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Ghasemi, A., Barzinjy, A.A. et al. Simulating natural convection and entropy generation of a nanofluid in an inclined enclosure under an angled magnetic field with a circular fin and radiation effect. J Therm Anal Calorim 139, 3803–3816 (2020). https://doi.org/10.1007/s10973-019-08729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08729-0

Keywords

Navigation