Skip to main content
Log in

Enhancement of natural convection heat transfer using different nanoparticles in an inclined semi-annular enclosure partially heated from above

  • Heat and Mass Transfer and Physical Gasdynamics
  • Published:
High Temperature Aims and scope

Abstract

This study addresses a numerical analysis of heat transfer and fluid flow in an inclined half-annulus partially heated from above and filled with nanofluids. The conservation equations in cylindrical coordinates are solved using an in-house FORTRAN code based on the finite volume method coupled with multigrid acceleration. A localized heat source owing constant temperature is placed along the outer cylinder of the annular region. Water-based nanofluid containing various volume fractions of Au, Cu, CuO and Al2O3 nanoparticles is used to examine potential heat transfer enhancement in the annulus. The effective thermal conductivity and viscosity of nanofluid are calculated using the Maxwell-Garnetts (MG) and Brinkman models, respectively. Different configurations are considered and numerical simulations were performed for different governing parameters such as the Rayleigh number, the size γ and/or location θ p of the heat source and inclination angle of enclosure α. It is found that the average Nusselt number exhibits an increasing trend as dual functions of the Rayleigh number and the solid volume fraction of the nanoparticles. The highest values of enhancement are obtained when using Au nanoparticles. Moreover, it is observed that the size, γ, and location, θ p , of the heater source significantly affect the resulting convective flow. An optimum size of the heater source is manifested in which the average Nusselt number attains a minimum for a given Rayleigh number. Reliable correlations formulae expressing the average Nusselt number in terms of Ra, φ, γ and θ p are established. Also for γ = 180°, we note that the change of inclination angle has a significant impact on the thermal and hydrodynamic flow field. It is shown that the minimum values of average Nusselt numbers are found to be at αmin = 45°, 90°, 90° for Ra = 103, 104 and 105, respectively. However, its maximum occurs at αmax = 180° for all Ra number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuehn, T.H. and Goldstein, R.J., J. Fluid Mech., 1976, vol. 74, p. 695.

    Article  ADS  MATH  Google Scholar 

  2. Kuehn, T.H. and Goldstein, R.J., J. Heat Transfer, 1978, vol. 100, p. 635.

    Article  Google Scholar 

  3. Yeh, C.-L., Int. J. Heat Mass Transfer, 2002, vol. 45, p. 775.

    Article  MATH  Google Scholar 

  4. Roschina, N.A., Uvarov, A.V., and Osipov, A.I., Int. J. Heat Mass Transfer, 2005, vol. 48, p. 4518.

    Article  MATH  Google Scholar 

  5. Yoo, J.-S., Int. J. Heat Mass Transfer, 2003, vol. 46, p. 2499.

    Article  MATH  Google Scholar 

  6. Shahraki, F., Numer. Heat Transfer, Part A, 2002, vol. 42, p. 603.

    Article  ADS  Google Scholar 

  7. Waheed, M.A., Numer. Heat Transfer, Part A, 2008, vol. 53, p. 323.

    Article  ADS  Google Scholar 

  8. Nada, S.A., Heat Mass Transfer, 2008, vol. 44, p. 929.

    Article  ADS  Google Scholar 

  9. Yang, C.-S., Jeng, D.-Z., Tang, U.-H., and Gau, C., J. Heat Transfer, 2009, vol. 131, p. 482.

    Google Scholar 

  10. Choi, S.U.S., ASME Fluids Eng. Div., 1995, vol. 231, p. 99.

    Google Scholar 

  11. Khanafer, K. and Vafai, M., Int. J. Heat and Mass Transfer, 2003, 46, no. 19, p. 3639.

    Article  MATH  Google Scholar 

  12. Jou, R. and Tzeng, Sh., Int. Commun. Heat Mass Transfer, 2006, vol. 33, p. 727.

    Article  Google Scholar 

  13. Nanna, A.G.A., Fistrovich, T., Malinski, K., and Choi, S.U.S., in Proceedings of the 2004 ASME International Mechanical Engineering Congress and Exposition (IMECE), Anaheim, California, United States, November 13–19, 2004, No. IMECE2004-62059, 8 pages.

  14. Nanna, A.G.A. and Routhu, M., in Proceedings of the 2005 ASME Summer Heat Transfer Conference (SHTC), San Francisco, California, United States, July 17–22, 2005, No. SHTC2005-72782, 8 pages.

  15. Oztop, H.F. and Abu-Nada, E., Int. J. Heat Fluid Flow, 2008, vol. 29, p. 1326.

    Article  Google Scholar 

  16. Abu-Nada, E., Masoud, Z., and Hijazi, A., Int. Commun. Heat Mass Transfer, 2008, vol. 35, p. 657.

    Article  Google Scholar 

  17. Aminossadati, S.M. and Ghasemi, B., Eur. J. Mech., B: Fluids, 2009, vol. 28, p. 630.

    Article  ADS  MATH  Google Scholar 

  18. Santra, A.K., Sen, S., and Chakraborty, N., Int. J. Therm. Sci., 2008, vol. 47, p. 1113.

    Article  Google Scholar 

  19. Sheikhzadeh, G.A., Arefmanesh, A., Kheirkhah, M.H., and Abdollahi, R., Eur. J. Mech., B: Fluids, 2011, vol. 30, p. 166.

    Article  ADS  MATH  Google Scholar 

  20. Jmai, R., Ben-Beya, B., and Lili, T., Superlattices Microstruct., 2013, vol., 53, p. 130.

    Article  ADS  Google Scholar 

  21. Upton, T.D. and Watt, D.W., Int. J. Heat Mass Transfer, 1997, vol. 40, no. 11, p. 2679.

    Article  Google Scholar 

  22. Brooker, A.M.H.J.C., Patterson, T.G., and Schopf, W., Int. J. Heat Mass Transfer, 2000, vol. 43, p. 297.

    Article  MATH  Google Scholar 

  23. Aydin, O., Int. Commun. Heat Mass Transfer, 1999, vol. 26, no. 1, p. 135.

    Article  Google Scholar 

  24. Wang, H. and Hamed, M.S., Int. J. Therm. Sci., 2006, vol. 45, no. 8, p. 782.

    Article  Google Scholar 

  25. Ece, M.C. and Buyuk, E.N., Fluid Dyn. Res., 2006, vol. 38, no. 8, p. 564.

    Article  ADS  MATH  Google Scholar 

  26. Aminossadati, S.M. and Ghasemi, B., Int. J. Heat Technol., 2005, vol. 23, no. 2, p. 43.

    Google Scholar 

  27. Ouriemi, M., Vasseur, P., and Bahloul, A., Numer. Heat Transfer, Part A, 2005, vol. 46, no. 6, p. 547.

    Article  ADS  Google Scholar 

  28. Ouriemi, M., Vasseur, P., and Bahloul, A., Int. Commun. Heat Mass Transfer, 2005, vol. 32, no. 6, p. 770.

    Article  Google Scholar 

  29. Cianfrini, C., Corcione, M., and Dell’Omo, P.P., Int. J. Therm. Sci., 2005, vol. 44, no. 5, p. 441.

    Article  Google Scholar 

  30. Yu, H., Li., N., and Ecke, R.E., Phys Rev. E, 2007, vol. 76, no. 2, article no. 026303.

    Google Scholar 

  31. Goldstein, R.J., Chaing, H.D., Srinivasan, V., and Fleischer, A.S., Heat Mass Transfer, 2005, vol. 41, no. 11, p. 991.

    Article  ADS  Google Scholar 

  32. Abu-nada, E. and Oztop, H., Int. J. Heat Fluid Flow, 2009, vol. 30, p. 669.

    Article  Google Scholar 

  33. Ögüt, E.B., Int. J. Therm. Sci., 2009, vol. 48, p. 2063.

    Article  Google Scholar 

  34. Saleh, H., Roslan, R., and Hashim, I., Int. J. Heat Mass Transfer, 2011, vol. 54, p. 194–201.

    Article  MATH  Google Scholar 

  35. Ghasemi, B. and Aminossadati, S.M., Numer. Heat Transfer, Part A, 2009, vol. 55, p. 807.

    Article  ADS  Google Scholar 

  36. Bararnia, H., Hooman, K., and Ganji, D.D., Numer. Heat Transfer, Part A, 2011, vol. 59, p. 487.

    Article  ADS  Google Scholar 

  37. Abu-Nada, E., Masoud, Z., and Hijazi, A., Int. Commun. Heat Mass Transfer, 2008, vol. 35, pp. 657–665.

    Article  Google Scholar 

  38. Zeitoun, O. and Ali, M.E., Int. J. Nanopart., 2009, vol. 2, p. 173.

    Article  Google Scholar 

  39. Abu-Nada, E., Int. J. Heat Fluid Flow, 2009, vol. 30, p. 679.

    Article  Google Scholar 

  40. Abu-Nada, E., J. Heat Transfer, 2010, vol. 132 p. 052401.

    Article  Google Scholar 

  41. Xu, X., Yu, Z.-T., Cai, H.-Y., Fan, L.-W., and Cen, K.-F., Int. J. Heat Mass Transfer, 2012, vol. 55, p. 1141.

    Article  MATH  Google Scholar 

  42. Soleimani, S., Sheikholeslami, M., Ganji, D.D., and Gorji-Bandpay, M., Int. Commun. Heat Mass Transfer, 2012, vol. 39, p. 565.

    Article  Google Scholar 

  43. Achdou, Y. and Guermond, J.L., SIAM J. Numer. Anal., 2000, vol. 37, p. 799.

    Article  MATH  MathSciNet  Google Scholar 

  44. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: McGraw-Hill, 1980.

    MATH  Google Scholar 

  45. Leonard, B.P., Comput. Methods Appl. Mech. Eng., 1979, vol. 19, p. 59.

    Article  ADS  MATH  Google Scholar 

  46. Leonard, B.P., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, Philadelphia, Pennsylvania, United States: Society for Industrial and Applied Mathematics, 1994.

    Google Scholar 

  47. Ben-Cheikh, N., Ben-Beya, B., and Lili, T., Numer. Heat Transfer, Part B, 2007, vol. 52, p. 131.

    Article  ADS  Google Scholar 

  48. Lee, T.S., Hu, G.S. and Shu, C. Numer. Heat Transfer, Part A, 2002, vol. 41, p. 803.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bezi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezi, S., Ben-Cheikh, N., Ben-Beya, B. et al. Enhancement of natural convection heat transfer using different nanoparticles in an inclined semi-annular enclosure partially heated from above. High Temp 53, 99–117 (2015). https://doi.org/10.1134/S0018151X15010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X15010022

Keywords

Navigation