Skip to main content
Log in

Experimental study on combustion behavior of mixed carbonate solvents and separator used in lithium-ion batteries

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this article, the combustion characteristics of different carbonate mixed solvents are considered by means of cone calorimeter. The coexistence system is composed of ternary carbonate mixed solvent and 1-g 2325 separator. Then, the comparison between coexistence systems and corresponding solvent mixtures is conducted. Experimental findings reveal that the combustion hazard of solvent mixtures is dominated by the component which is more volatile. The 2325 separator is not completely combusted when added to the ternary mixed solvent. The effects of 2325 separator on combustion of four ternary carbonate mixed solvents are different. It can be sure that the hazard posed by the addition of 2325 separator is all increased. More details about these variations have been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

\(\Delta h_{\text{c,eff}}\) :

Effective heat of combustion (kJ g−1)

Hvap :

Heat of vaporization

m I :

Initial mass (g)

m A :

Ash mass (g)

\(\dot{q}\) :

Heat release rate (kW)

Q t :

Total heat released (kJ)

t :

Time (s)

T :

Temperature (K)

Ρ :

Density (g cm−3)

DEC:

Diethyl carbonate

DMC:

Dimethyl carbonate

EC:

Ethylene carbonate

EMC:

Ethyl methyl carbonate

FP:

Flash point

HRR:

Heat release rate

ISO:

International Organization for Standardization

LIB:

Lithium-ion battery

LiPF6 :

Lithium hexafluorophosphate

MLR:

Mass loss rate

THR:

Total heat released

References

  1. Armand M, Tarascon J-M. Building better batteries. Nature. 2008;451:652–7.

    Article  CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid: a battery of choices. Science. 2011;334(6058):928–35.

    Article  CAS  Google Scholar 

  3. Wang Q, Huang P, Ping P, Du Y, Li K, Sun J. Combustion behavior of lithium iron phosphate battery induced by external heat radiation. J Loss Prev Process Ind. 2017;49:961–9.

    Article  CAS  Google Scholar 

  4. Gachot G, Grugeon S, Eshetu GG, Mathiron D, Ribière P, Armand M, Laruelle S. Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis. Electrochim Acta. 2012;83:402–9.

    Article  CAS  Google Scholar 

  5. Mikolajczak C, Kahn M, White K, Long RT. Lithium-ion batteries hazard and use assessment. Berlin: Springer; 2012.

    Google Scholar 

  6. Wang Z, Ouyang D, Chen M, Wang X, Zhang Z, Wang J. Fire behavior of lithium-ion battery with different states of charge induced by high incident heat fluxes. J Therm Anal Calorim. 2019;136(6):2239–47.

    Article  CAS  Google Scholar 

  7. Shan MX. Analysis on thermal runaway of lithium ion battery. In: International conference on applied mechanics, mechanical and materials engineering; 2016.

  8. Feng X, Ouyang M, Liu X, Lu L, Xia Y, He X. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review. Energy Storage Mater. 2018;10:246–67.

    Article  Google Scholar 

  9. Chung Y-H, Jhang W-C, Chen W-C, Wang Y-W, Shu C-M. Thermal hazard assessment for three C rates for a Li-polymer battery by using vent sizing package 2. J Therm Anal Calorim. 2017;127(1):809–17.

    Article  CAS  Google Scholar 

  10. Zheng S, Wang L, Feng X, He X. Probing the heat sources during thermal runaway process by thermal analysis of different battery chemistries. J Power Sources. 2018;378:527–36.

    Article  CAS  Google Scholar 

  11. Liu J, Wang Z, Gong J, Liu K, Wang H, Guo L. Experimental study of thermal runaway process of 18650 lithium-ion battery. Materials. 2017;10(3):230.

    Article  CAS  Google Scholar 

  12. Wu T, Chen H, Wang Q, Sun J. Comparison analysis on the thermal runaway of lithium-ion battery under two heating modes. J Hazard Mater. 2018;344:733–41.

    Article  CAS  Google Scholar 

  13. Lu T-Y, Chiang C-C, Wu S-H, Chen K-C, Lin S-J, Wen C-Y, Shu C-M. Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J Therm Anal Calorim. 2013;114(3):1083–8.

    Article  CAS  Google Scholar 

  14. Huang P, Ping P, Li K, Chen H, Wang Q, Wen J, Sun J. Experimental and modeling analysis of thermal runaway propagation over the large format energy storage battery module with Li4Ti5O12 anode. Appl Energy. 2016;183:659–73.

    Article  CAS  Google Scholar 

  15. Feng X, Sun J, Ouyang M, Wang F, He X, Lu L, Peng H. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J Power Sources. 2015;275:261–73.

    Article  CAS  Google Scholar 

  16. Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, Zhang M. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry. J Power Sources. 2014;255:294–301.

    Article  CAS  Google Scholar 

  17. Fu Y, Lu S, Li K, Liu C, Cheng X, Zhang H. An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J Power Sources. 2015;273:216–22.

    Article  CAS  Google Scholar 

  18. Huang P, Wang Q, Li K, Ping P, Sun J. The combustion behavior of large scale lithium titanate battery. Sci Rep. 2015;5:7788.

    Article  CAS  Google Scholar 

  19. Chen M, Zhou D, Chen X, Zhang W, Liu J, Yuen R, Wang J. Investigation on the thermal hazards of 18650 lithium ion batteries by fire calorimeter. J Therm Anal Calorim. 2015;122(2):755–63.

    Article  CAS  Google Scholar 

  20. Ping P, Wang Q, Huang P, Li K, Sun J, Kong D, Chen C. Study of the fire behavior of high-energy lithium-ion batteries with full-scale burning test. J Power Sources. 2015;285:80–9.

    Article  CAS  Google Scholar 

  21. Chen M, Yuen R, Wang J. An experimental study about the effect of arrangement on the fire behaviors of lithium-ion batteries. J Therm Anal Calorim. 2017;129(1):181–8.

    Article  CAS  Google Scholar 

  22. Ouyang D, Chen M, Wang J. Fire behaviors study on 18650 batteries pack using a cone-calorimeter. J Therm Anal Calorim. 2019;136(6):2281–94.

    Article  CAS  Google Scholar 

  23. Chen M, He Y, De Zhou C, Richard Y, Wang J. Experimental study on the combustion characteristics of primary lithium batteries fire. Fire Technol. 2014;52(2):365–85.

    Article  Google Scholar 

  24. Larsson F, Andersson P, Blomqvist P, Lorén A, Mellander B-E. Characteristics of lithium-ion batteries during fire tests. J Power Sources. 2014;271:414–20.

    Article  CAS  Google Scholar 

  25. Hess S, Wohlfahrt-Mehrens M, Wachtler M. Flammability of Li-ion battery electrolytes: flash point and self-extinguishing time measurements. J Electrochem Soc. 2015;162(2):A3084–97.

    Article  CAS  Google Scholar 

  26. Ouyang D, Chen M, Wei R, Wang Z, Wang J. A study on the fire behaviors of 18650 battery and batteries pack under discharge. J Therm Anal Calorim. 2019;136(5):1915–26.

    Article  CAS  Google Scholar 

  27. Somandepalli V, Marr K, Horn Q. Quantification of combustion hazards of thermal runaway failures in lithium-ion batteries. SAE Int J Altern Powertrains. 2014;3(1):98–104.

    Article  Google Scholar 

  28. Chen M, Dongxu O, Cao S, Liu J, Wang Z, Wang J. Effects of heat treatment and SOC on fire behaviors of lithium-ion batteries pack. J Therm Anal Calorim. 2019;136(6):2429–37.

    Article  CAS  Google Scholar 

  29. Afzal A, Samee ADM, Razak RKA, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135(3):1797–811.

    Article  CAS  Google Scholar 

  30. Ribière P, Grugeon S, Morcrette M, Boyanov S, Laruelle S, Marlair G. Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry. Energy Environ Sci. 2012;5(1):5271–80.

    Article  Google Scholar 

  31. Zhang W, Chen X, Chen Q, Ding C, Liu J, Chen M, Wang J. Combustion calorimetry of carbonate electrolytes used in lithium ion batteries. J Fire Sci. 2014;33(1):22–36.

    Article  CAS  Google Scholar 

  32. Harris SJ, Timmons A, Pitz WJ. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries. J Power Sources. 2009;193(2):855–8.

    Article  CAS  Google Scholar 

  33. Fu Y, Lu S, Shi L, Cheng X, Zhang H. Combustion characteristics of electrolyte pool fires for lithium ion batteries. J Electrochem Soc. 2016;163(9):A2022–8.

    Article  CAS  Google Scholar 

  34. Eshetu GG, Grugeon S, Laruelle S, Boyanov S, Lecocq A, Bertrand J-P, Marlair G. In-depth safety-focused analysis of solvents used in electrolytes for large scale lithium ion batteries. Phys Chem Chem Phys. 2013;15(23):9145–55.

    Article  CAS  Google Scholar 

  35. Ravdel B, Abraham KM, Gitzendanner R, DiCarlo J, Lucht B, Campion C. Thermal stability of lithium-ion battery electrolytes. J Power Sources. 2003;119–121:805–10.

    Article  CAS  Google Scholar 

  36. Eshetu GG, Bertrand J-P, Lecocq A, Grugeon S, Laruelle S, Armand M, Marlair G. Fire behavior of carbonates-based electrolytes used in Li-ion rechargeable batteries with a focus on the role of the LiPF 6 and LiFSI salts. J Power Sources. 2014;269:804–11.

    Article  CAS  Google Scholar 

  37. Huang Q, Yan M, Jiang Z. Thermal study of organic electrolytes with fully charged cathodic materials of lithium-ion batteries. J Solid State Electrochem. 2007;12(6):671–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China (2018YFC0808600) and Programs of Senior Talent Foundation of Jiangsu University (17JDG036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyi Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, J., Liu, H. & Chen, M. Experimental study on combustion behavior of mixed carbonate solvents and separator used in lithium-ion batteries. J Therm Anal Calorim 139, 1255–1264 (2020). https://doi.org/10.1007/s10973-019-08502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08502-3

Keywords

Navigation