Skip to main content
Log in

Energy, Exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant Zero Liquid Discharge Systems

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Water scarcity and environmental impacts of blowdown within steam power plants are among the important growing concerns. In order to solve these problems, applying a zero liquid discharge (ZLD) system for treating the brine of the power plants and reusing this water is crucial. In this study, the process of a ZLD system is evaluated by using energy and exergy analyses. The ZLD system was designed to recover brines to demineralize water, which consists of four main parts including vacuum evaporator, roots pump, heat exchanger, and circulation pump. The effects of the dimensional and operating parameters on the freshwater flow rate, exergy efficiency, and the consumption power are investigated. When volume of the evaporator is 7 m3, with increase in total evaporation time from 1 to 3 h, total power consumption decreased from 106.16 to 99.52 kW h and freshwater production reduced from 5914.62 to 2048.52 L h−1. The amount of produced freshwater flow rate is independent of the recirculating flow rate and is a function of the evaporator’s volume. Therefore, in volumes of 3, 5, and 7 m3, the produced freshwater flow rate is constant at about 1300, 2200, and 3070, respectively. Also, the results showed that when increasing the concentration of the brine in the range of 2000–30,000 ppm, the flow rate of the produced freshwater decreases from 3377 to 2911 L h−1 and the total power consumption reduced from 113.28 to 96.42 kW h. Moreover, by increasing the volume of vacuum evaporator, freshwater flow rate rises. Increasing the freshwater flow rate has a dramatic influence on the early working cycles. Since the evaporation is a cyclic process, the exergy efficiency of the roots pump and heat exchanger improves, while the exergy efficiency of the vacuum evaporator decreases versus increasing working cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

c :

Specific heat capacity (J kg−1 K−1)

\(e\) :

Specific exergy

\(\dot{E}_{\text{D}}\) :

Exergy destruction (kW)

X :

Salinity ratio

s :

Entropy (kJ kg−1 K−1)

t :

Time (s)

T :

Temperature (K)

P :

Pressure (kPa)

h :

Enthalpy (kJ kg−1)

R :

Gas constant (kJ kg−1 K−1)

y :

Mole fraction

\(\dot{Q}\) :

Heat transferred (kW)

\(\dot{W}\) :

Power (kW)

m :

Mass (kg)

\(\dot{m}\) :

Flow rate (kg−1 s−1)

\(\eta\) :

Isentropic efficiency

0:

Reference ambient condition

ke:

Kinetic exergy

po:

Potential exergy

ph:

Physical exergy

ch:

Chemical exergy

is:

Isentropic

PHX:

Preheat heat exchanger

DP:

Distillate pump

CrP:

Circulation pump

HX:

Heat exchanger

RP:

Roots pump

EV:

Evaporator vacuum

FWP:

Feed water pump

CFWH:

Close feed water heater

OFWH:

Open feed water heater

SH:

Superheater

SG:

Steam generator

PH:

Preheater

HPT:

High-pressure turbine

LPT:

Low pressure turbine

RH:

Reheat

ST:

Storage tank

FWT:

Feed water tank

PHE:

Preheat exchanger

HE:

Heat exchanger

References

  1. Di Fraia S, Massarotti N, Vanoli L. A novel energy assessment of urban wastewater treatment plants. Energy Convers Manag. 2018;163:304–13. https://doi.org/10.1016/J.ENCONMAN.2018.02.058.

    Article  Google Scholar 

  2. Song J, Yang W, Li Z, Higano Y, Wang X. Discovering the energy, economic and environmental potentials of urban wastes: an input–output model for a metropolis case. Energy Convers Manag. 2016;114:168–79. https://doi.org/10.1016/J.ENCONMAN.2016.02.014.

    Article  Google Scholar 

  3. Yang Y, Zhu J, Zhu G, Yang L, Zhu Y. The effect of high temperature on syngas production by immediate pyrolysis of wet sewage sludge with sawdust. J Therm Anal Calorim. 2018;132:1783–94. https://doi.org/10.1007/s10973-018-7143-9.

    Article  CAS  Google Scholar 

  4. Naeimi A, Bidi M, Ahmadi MH, Kumar R, Sadeghzadeh M, Alhuyi Nazari M. Design and exergy analysis of waste heat recovery system and gas engine for power generation in Tehran cement factory. Therm Sci Eng Prog. 2019;9:299–307. https://doi.org/10.1016/j.tsep.2018.12.007.

    Article  Google Scholar 

  5. Nakoa K, Rahaoui K, Date A, Akbarzadeh A. Sustainable Zero Liquid Discharge desalination (SZLDD). Sol Energy. 2016;135:337–47. https://doi.org/10.1016/J.SOLENER.2016.05.047.

    Article  Google Scholar 

  6. Naseri A, Bidi M, Ahmadi M, Saidur R. Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine. J Clean Prod. 2017;158:165–81. https://doi.org/10.1016/J.JCLEPRO.2017.05.005.

    Article  CAS  Google Scholar 

  7. Han D, He WF, Yue C, Pu WH. Study on desalination of zero-emission system based on mechanical vapor compression. Appl Energy. 2017;185:1490–6. https://doi.org/10.1016/J.APENERGY.2015.12.061.

    Article  Google Scholar 

  8. Mohammadi A, Ashouri M, Ahmadi MH, Bidi M, Sadeghzadeh M, Ming T. Thermoeconomic analysis and multiobjective optimization of a combined gas turbine, steam, and organic Rankine cycle. Energy Sci Eng. 2018;6:506–22. https://doi.org/10.1002/ese3.227.

    Article  Google Scholar 

  9. Bidabadi M, Akbari Vakilabadi M, Khoeini Poorfar A, Monteiro E, Rouboa A, Rahbari A. Mathematical modeling of premixed counterflow combustion of organic dust cloud. Renew Energy. 2016;92:376–84. https://doi.org/10.1016/J.RENENE.2016.02.002.

    Article  CAS  Google Scholar 

  10. Bidabadi M, Vakilabadi MA, Esmaeilnejad A. Strain rate effect on microorganic dust flame in a premixed counterflow. Heat Transf Res. 2015;46:1–11. https://doi.org/10.1615/heattransres.2014005471.

    Article  Google Scholar 

  11. Rahbari A, Wong K-F, Vakilabadi MA, Poorfar AK, Afzalabadi A. Theoretical investigation of particle behavior on flame propagation in lycopodium dust cloud. J Energy Resour Technol. 2016;139:12202–7.

    Article  Google Scholar 

  12. Dabiri S, Khodabandeh E, Poorfar AK, Mashayekhi R, Toghraie D, Abadian Zade SA. Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Energy. 2018;153:17–26. https://doi.org/10.1016/J.ENERGY.2018.04.025.

    Article  Google Scholar 

  13. Khodabandeh E, Safaei MR, Akbari S, Akbari OA, Alrashed AAAA. Application of nanofluid to improve the thermal performance of horizontal spiral coil utilized in solar ponds: geometric study. Renew Energy. 2018;122:1–16. https://doi.org/10.1016/J.RENENE.2018.01.023.

    Article  CAS  Google Scholar 

  14. Ashrafi ZN, Ghasemian M, Shahrestani MI, Khodabandeh E, Sedaghat A. Evaluation of hydrogen production from harvesting wind energy at high altitudes in Iran by three extrapolating Weibull methods. Int J Hydr Energy. 2018;43:3110–32. https://doi.org/10.1016/J.IJHYDENE.2017.12.154.

    Article  CAS  Google Scholar 

  15. Akbari Vakiabadi M, Bidi M. Technical and economical evaluation of grid-connected renewable power generation system for a residential urban area. Int J Low-Carbon Technol. 2019;14:1–13. https://doi.org/10.1093/ijlct/cty053.

    Article  Google Scholar 

  16. Vakilabadi MA, Bidi M, Najafi AF, Ahmadi MH. Exergy analysis of a hybrid solar-fossil fuel power plant. Energy Sci Eng. 2019;7:146–61. https://doi.org/10.1002/ese3.265.

    Article  CAS  Google Scholar 

  17. Farahbod F, Mowla D, Jafari Nasr MR, Soltanieh M. Experimental study of a solar desalination pond as second stage in proposed zero discharge desalination process. Sol Energy. 2013;97:138–46. https://doi.org/10.1016/J.SOLENER.2013.02.033.

    Article  CAS  Google Scholar 

  18. Açıkkalp E, Hepbasli A, Yucer CT, Karakoc TH. Advanced life cycle integrated exergoeconomic analysis of building heating systems: an application and proposing new indices. J Clean Prod. 2018;195:851–60. https://doi.org/10.1016/J.JCLEPRO.2018.05.239.

    Article  Google Scholar 

  19. Açıkkalp E, Yucer CT, Hepbasli A, Karakoc TH. Advanced low exergy (ADLOWEX) modeling and analysis of a building from the primary energy transformation to the environment. Energy Build. 2014;81:281–6. https://doi.org/10.1016/J.ENBUILD.2014.06.024.

    Article  Google Scholar 

  20. Karakoc T, Açıkkalp E, Altuntaş Ö, Yilanli M. Aircraft fuel system energy and exergy analysis under hot day conditions. Int J Exergy. 2018;25:152. https://doi.org/10.1504/IJEX.2018.10010741.

    Article  Google Scholar 

  21. Erol GO, Açıkkalp E, Hepbasli A. Performance assessment of an ice rink refrigeration system through advanced exergoeconomic analysis method. Energy Build. 2017;138:118–26. https://doi.org/10.1016/J.ENBUILD.2016.12.025.

    Article  Google Scholar 

  22. Ekici S, Altuntaş Ö, Açıkkalp E, Söğüt Z, Karakoc T. Assessment of thermodynamic performance and exergetic-sustainability of turboprop engine based on exergetic indicators using mixture of kerosene and methanol. Int J Exergy. 2015. https://doi.org/10.1504/ijex.2016.075666.

    Article  Google Scholar 

  23. Şöhret Y, Açikkalp E, Hepbasli A, Karakoc TH. Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts. Energy. 2015;90:1219–28. https://doi.org/10.1016/j.energy.2015.06.071.

    Article  Google Scholar 

  24. Açıkkalp E, Hepbasli A, Yucer CT, Karakoc TH. Advanced exergoenvironmental assessment of a building from the primary energy transformation to the environment. Energy Build. 2015;89:1–8. https://doi.org/10.1016/J.ENBUILD.2014.12.020.

    Article  Google Scholar 

  25. Açıkkalp E, Yucer CT, Hepbasli A, Karakoc TH. Advanced low exergoeconomic (ALEXERGO) assessment of a building along with its heating system at various stages. Energy Build. 2015;87:66–73. https://doi.org/10.1016/J.ENBUILD.2014.11.020.

    Article  Google Scholar 

  26. Açıkkalp E, Yamık H, Caner N, Açıkkalp E. Energy and exergy evaluation of an air separation facility: a case study. Sep Sci Technol. 2014. https://doi.org/10.1080/01496395.2014.907316.

    Article  Google Scholar 

  27. Açikkalp E, Aras H, Hepbasli A. Advanced exergy analysis of a trigeneration system with a diesel-gas engine operating in a refrigerator plant building. Energy Build. 2014;80:268–75. https://doi.org/10.1016/j.enbuild.2014.05.029.

    Article  Google Scholar 

  28. Açikkalp E, Aras H, Hepbasli A. Advanced exergoeconomic analysis of a trigeneration system using a diesel-gas engine. Appl Therm Eng. 2014;67:388–95. https://doi.org/10.1016/j.applthermaleng.2014.03.005.

    Article  Google Scholar 

  29. Açikkalp E, Aras H, Hepbasli A. Advanced exergy analysis of an electricity-generating facility using natural gas. Energy Convers Manag. 2014;82:146–53. https://doi.org/10.1016/j.enconman.2014.03.006.

    Article  Google Scholar 

  30. Açikkalp E, Aras H, Hepbasli A. Advanced exergoenvironmental assessment of a natural gas-fired electricity generating facility. Energy Convers Manag. 2014;81:112–9. https://doi.org/10.1016/j.enconman.2014.02.011.

    Article  Google Scholar 

  31. Açikkalp E, Aras H, Hepbasli A. Advanced exergoeconomic analysis of an electricity-generating facility that operates with natural gas. Energy Convers Manag. 2014;78:452–60. https://doi.org/10.1016/j.enconman.2013.11.003.

    Article  Google Scholar 

  32. Kaushik SC, Singh OK. Estimation of chemical exergy of solid, liquid and gaseous fuels used in thermal power plants. J Therm Anal Calorim. 2014;115:903–8. https://doi.org/10.1007/s10973-013-3323-9.

    Article  CAS  Google Scholar 

  33. Sheshpoli MA, Ajarostaghi SSM, Delavar MA. Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle. J Therm Anal Calorim. 2019;135:1699–712. https://doi.org/10.1007/s10973-018-7338-0.

    Article  CAS  Google Scholar 

  34. Shams Ghoreishi SM, Akbari Vakilabadi M, Bidi M, Khoeini Poorfar A, Sadeghzadeh M, Ahmadi MH, et al. Analysis, economical and technical enhancement of an organic Rankine cycle recovering waste heat from an exhaust gas stream. Energy Sci Eng. 2019. https://doi.org/10.1002/ese3.274.

    Article  Google Scholar 

  35. Ksepko E, Klimontko J, Kwiecinska A. Industrial wastewater treatment wastes used as oxygen carriers in energy generation processes. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08214-8.

    Article  Google Scholar 

  36. Lee S, Esfahani IJ, Ifaei P, Moya W, Yoo C. Thermo-environ-economic modeling and optimization of an integrated wastewater treatment plant with a combined heat and power generation system. Energy Convers Manag. 2017;142:385–401. https://doi.org/10.1016/J.ENCONMAN.2017.03.060.

    Article  Google Scholar 

  37. Audah N, Ghaddar N, Ghali K. Optimized solar-powered liquid desiccant system to supply building fresh water and cooling needs. Appl Energy. 2011;88:3726–36. https://doi.org/10.1016/J.APENERGY.2011.04.028.

    Article  CAS  Google Scholar 

  38. Xiong R, Wei C. Current status and technology trends of Zero Liquid Discharge at coal chemical industry in China. J Water Process Eng. 2017;19:346–51. https://doi.org/10.1016/J.JWPE.2017.09.005.

    Article  Google Scholar 

  39. Yao J, Wen D, Shen J, Wang J. Zero discharge process for dyeing wastewater treatment. J Water Process Eng. 2016;11:98–103. https://doi.org/10.1016/J.JWPE.2016.03.012.

    Article  Google Scholar 

  40. Demirbaş A. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag. 2001;42:1357–78. https://doi.org/10.1016/S0196-8904(00)00137-0.

    Article  Google Scholar 

  41. Johannsen P, Karlapudi R, Reinhold G. High pressure reverse osmosis for wastewater minimization and Zero Liquid Discharge applications. Desalination. 2006;199:84–5. https://doi.org/10.1016/j.desal.2006.03.021.

    Article  CAS  Google Scholar 

  42. Ahmadi MH, Alhuyi Nazari M, Sadeghzadeh M, Pourfayaz F, Ghazvini M, Ming T, et al. Thermodynamic and economic analysis of performance evaluation of all the thermal power plants: a review. Energy Sci Eng. 2019;7:30–65. https://doi.org/10.1002/ese3.223.

    Article  Google Scholar 

  43. Ifaei P, Ataei A, Yoo C. Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers-Part 2: thermoeconomic and environmental analysis. Energy Convers Manag. 2016;123:625–42. https://doi.org/10.1016/J.ENCONMAN.2016.06.030.

    Article  Google Scholar 

  44. Ifaei P, Rashidi J, Yoo C. Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers—Part 1: energy and economic modelling and analysis. Energy Convers Manag. 2016;123:610–24. https://doi.org/10.1016/J.ENCONMAN.2016.06.036.

    Article  Google Scholar 

  45. Akbari Vakilabadi M, Bidi M, Najafi AF. Energy, Exergy analysis and optimization of solar thermal power plant with adding heat and water recovery system. Energy Convers Manag. 2018;171:1639–50. https://doi.org/10.1016/J.ENCONMAN.2018.06.094.

    Article  Google Scholar 

  46. Wang D, Bao A, Kunc W, Liss W. Coal power plant flue gas waste heat and water recovery. Appl Energy. 2012;91:341–8. https://doi.org/10.1016/J.APENERGY.2011.10.003.

    Article  Google Scholar 

  47. Seigworth A, Ludlum R, Reahl E. Case study: integrating membrane processes with evaporation to achieve economical Zero Liquid Discharge at the Doswell Combined Cycle Facility. Desalination. 1995;102:81–6. https://doi.org/10.1016/0011-9164(95)00044-3.

    Article  CAS  Google Scholar 

  48. Petrov P, Charters W, Wallschläger JD. Identification and determination of selenosulfate and selenocyanate in flue gas desulfurization waters. Environ Sci Technol. 2011;46:1716–23. https://doi.org/10.1021/es202529w.

    Article  CAS  Google Scholar 

  49. Córdoba P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs. Fuel. 2015;144:274–86. https://doi.org/10.1016/J.FUEL.2014.12.065.

    Article  Google Scholar 

  50. Barrow H, Pope CW. Droplet evaporation with reference to the effectiveness of water-mist cooling. Appl Energy. 2007;84:404–12. https://doi.org/10.1016/J.APENERGY.2006.09.007.

    Article  CAS  Google Scholar 

  51. Chow LC, Chung JN. Evaporation of water into a laminar stream of air and superheated steam. Int J Heat Mass Transf. 1983;26:373–80. https://doi.org/10.1016/0017-9310(83)90041-8.

    Article  CAS  Google Scholar 

  52. Ahmadi MH, Sameti M, Pourkiaei SM, Ming T, Pourfayaz F, Chamkha AJ, et al. Multi-objective performance optimization of irreversible molten carbonate fuel cell–Stirling heat engine–reverse osmosis and thermodynamic assessment with ecological objective approach. Energy Sci Eng. 2018;6:783–96. https://doi.org/10.1002/ese3.252.

    Article  CAS  Google Scholar 

  53. Ahmadi MH, Jokar MA, Ming T, Feidt M, Pourfayaz F, Astaraei FR. Multi-objective performance optimization of irreversible molten carbonate fuel cell–Braysson heat engine and thermodynamic analysis with ecological objective approach. Energy. 2018;144:707–22. https://doi.org/10.1016/J.ENERGY.2017.12.028.

    Article  Google Scholar 

  54. Kotas TJ, Tadeusz J. The exergy method of thermal plant analysis. London: Butterworths; 1985.

    Google Scholar 

  55. Ahmadi M, Sadaghiani SM, Pourfayaz F, Ghazvini M, Mahian O, Mehrpooya M, et al. Energy and exergy analyses of a solid oxide fuel cell-gas turbine-organic rankine cycle power plant with liquefied natural gas as heat sink. Entropy. 2018;20:484. https://doi.org/10.3390/e20070484.

    Article  CAS  Google Scholar 

  56. Mohammadi A, Ahmadi MH, Bidi M, Ghazvini M, Ming T. Exergy and economic analyses of replacing feedwater heaters in a Rankine cycle with parabolic trough collectors. Energy Rep. 2018;4:243–51. https://doi.org/10.1016/J.EGYR.2018.03.001.

    Article  Google Scholar 

  57. Kanoglu M, Dincer I, Rosen MA. Understanding energy and exergy efficiencies for improved energy management in power plants. Energy Pol. 2007;35:3967–78. https://doi.org/10.1016/J.ENPOL.2007.01.015.

    Article  Google Scholar 

  58. Ameri M, Ahmadi P. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Proceedings of international conference on power engineering, Hang Zhou: 2007.

  59. Vandani AMK, Bidi M, Ahmadi F. Exergy analysis and evolutionary optimization of boiler blowdown heat recovery in steam power plants. Energy Convers Manag. 2015;106:1–9. https://doi.org/10.1016/J.ENCONMAN.2015.09.018.

    Article  Google Scholar 

  60. Lemmon EW, Huber ML, Mclinden MO. NIST reference fluid thermodynamic and transport properties—REFPROP 9.0. 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Bidi or Mohammad Hossein Ahmadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari Vakilabadi, M., Bidi, M., Najafi, A.F. et al. Energy, Exergy analysis and performance evaluation of a vacuum evaporator for solar thermal power plant Zero Liquid Discharge Systems. J Therm Anal Calorim 139, 1275–1290 (2020). https://doi.org/10.1007/s10973-019-08463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08463-7

Keywords

Navigation