Skip to main content
Log in

Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

According to day-by-day consumption increase, energy high costs and nonrenewable energy destroying effects, clean technologies such as fuel cells lead a remarkable decline in consumption. In the present study, waste heat recovery from a hybrid system of an 1180 kW low-temperature polymer electrolyte membrane fuel cell and a vapor compression refrigeration cycle is surveyed using a recuperative organic Rankine cycle. The fuel cell system is equipped with a metal hydride storage. The heat absorbed from stack is divided into two streams. One stream flows into the recuperative organic Rankine cycle to produce power, and the other goes for waste heat recovery of the refrigeration cycle condenser; then, it is utilized for other components of fuel cell system including metal hydride to release hydrogen and H2 preheater to preheat the hydrogen to the stack temperature. Effects of operational parameters including fuel cell thermal efficiency, cooling load, pressure ratio, mass flow rate and working fluid of recuperative organic Rankine cycle were thermodynamically analyzed. Two working fluids were surveyed including R-245fa and R-134a. Results indicate that hybrid system thermal efficiency falls down by increase in turbine pressure ratio. The maximum system consumption power was dedicated in the case in which the fuel cell has its highest thermal efficiency in addition to minimum net produced power. Additionally, R-134a was determined as the best working fluid. Net output power and efficiency of the system with R-134a are about 1.2 and 20% more than R-245fa, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ne:

Number of electrons

F :

Faraday constant (C mol−1)

R :

Universal gas constant (J mol−1 K−1)

T :

Temperature (K)

P :

Pressure (Pa)

A cell :

Active surface area (cm2)

N cell :

Number of cells in stack

I :

Stack operating current (A)

L :

Membrane thickness (cm)

HHV:

Higher heating value of hydrogen (kJ mol−1)

h :

Enthalpy (kJ kg−1)

\( \dot{m} \) :

Mass flow rate (kg s−1)

S :

Entropy (kJ kg−1 K−1)

V :

Voltage (V)

W :

Power (W)

Q :

Heat (J)

r P :

Pressure ratio

\( \dot{Q}_{\text{ch}} \) :

Chemical energy (W)

\( \dot{Q}_{\text{net}} \) :

Net heat energy (W)

\( \dot{Q}_{\text{s,l}} \) :

Sensible and latent heat (W)

\( \dot{n} \) :

Molar flowrate (mol S−1)

W fc :

PEM fuel cell stack power output (W)

n :

Fuel cell thermal efficiency

η :

Efficiency

λ :

Stoichiometric rate

amb:

Ambient

cell:

Cell

air:

Air

fc:

Fuel cell

comp:

Compressor

turb:

Turbine

pump:

Pump

c:

Condenser

H2 :

Hydrogen

O2 :

Oxygen

N2 :

Nitrogen

ch:

Chemical

sl:

Sensible and latent

thm:

Thermal

elec:

Electrical

cons:

Consumption

PEMFC:

Proton exchange membrane fuel cell

RORC:

Recuperative organic Rankine cycle

VCRC:

Vapor compression refrigeration cycle

References

  1. Pu W, Yue C, Han D, He W, Liu X, Zhang Q, Chen Y. Experimental study on organic Rankine cycle for low grade thermal energy recovery. Appl Therm Eng. 2016;94:221–7.

    Article  CAS  Google Scholar 

  2. Hasanuzzaman M, Rahim NA, Saidur R, Kazi SN. Energy savings and emissions reductions for rewinding and replacement of industrial motor. Energy J. 2011;36(1):233–40.

    Article  CAS  Google Scholar 

  3. Brückner S, Liu S, Miró L, Radspieler M, Cabeza LF, Lävemann E. Industrial waste heat recovery technologies: an economic analysis of heat transformation technologies. Appl Energy J. 2015;151:157–67.

    Article  Google Scholar 

  4. Blesl M, Kempe S, Ohl M, Fahl U, König A, Jenssen T, Eltrop L. Wärmeatlas Baden-Württemberg-Erstellung eines Leitfadens und Umsetzung für Modellregionen

  5. Oró E, Miró L, Farid MM, Martin V, Cabeza LF. Energy management and CO2 mitigation using phase change materials (PCM) for thermal energy storage (TES) in cold storage and transport. Int J Refrig. 2014;42:26–35.

    Article  Google Scholar 

  6. Larsen U, Pierobon L, Haglind F, Gabrielii C. Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection. Energy J. 2013;55:803–12.

    Article  CAS  Google Scholar 

  7. Ziviani D, Beyene A, Venturini M. Advances and challenges in ORC systems modeling for low grade thermal energy recovery. Appl Energy J. 2014;15(121):79–95.

    Article  Google Scholar 

  8. Campana F, Bianchi M, Branchini L, De Pascale A, Peretto A, Baresi M, Fermi A, Rossetti N, Vescovo R. ORC waste heat recovery in European energy intensive industries: energy and GHG savings. Energy Convers Manag. 2013;76:244–52.

    Article  Google Scholar 

  9. Bhargava RK, Bianchi M, Campanari S, De Pascale A, di Montenegro GN, Peretto A. A parametric thermodynamic evaluation of high performance gas turbine based power cycles. J Eng Gas Turbines Power. 2010;132(2):022001.

    Article  Google Scholar 

  10. Bianchi M, Branchini L, De Pascale A, Melino F, Peretto A, Bhargava RK, Chaker MA. Gas turbine power augmentation technologies: A systematic comparative evaluation approach. In: ASME turbo expo 2010: power for land, sea, and air. American Society of Mechanical Engineers, pp 99–107. 2010

  11. Bianchi M, De Pascale A. Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl Energy J. 2011;88(5):1500–9.

    Article  Google Scholar 

  12. Dai Y, Wang J, Gao L. Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Convers Manag. 2009;50(3):576–82.

    Article  CAS  Google Scholar 

  13. Al-Sulaiman FA, Dincer I, Hamdullahpur F. Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: part I-formulations. Energy Convers Manag. 2013;69:199–208.

    Article  Google Scholar 

  14. Liu JP, Fu JQ, Ren CQ, Wang LJ, Xu ZX, Deng BL. Comparison and analysis of engine exhaust gas energy recovery potential through various bottom cycles. Appl Therm Eng. 2013;50(1):1219–34.

    Article  Google Scholar 

  15. Vélez F, Segovia JJ, Martín MC, Antolín G, Chejne F, Quijano A. A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renew Sustain Energy Rev. 2012;16(6):4175–89.

    Article  Google Scholar 

  16. European Community, Reference document on best available techniques in the cement, lime and magnesium oxide manufacturing industries; 2010.

  17. Calise F, d’Accadia MD, Vicidomini M, Scarpellino M. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and organic Rankine cycle. Energy Convers Manag. 2015;90:347–63.

    Article  Google Scholar 

  18. Wang JL, Zhao L, Wang XD. An experimental study on the recuperative low temperature solar Rankine cycle using R245fa. Appl Energy J. 2012;94:34–40.

    Article  Google Scholar 

  19. Shengjun Z, Huaixin W, Tao G. Performance comparison and parametric optimization of subcritical organic Rankine cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation. Appl Energy J. 2011;88(8):2740–54.

    Article  Google Scholar 

  20. Campana F, Bianchi M, Branchini L, De Pascale A, Peretto A, Baresi M, Fermi A, Rossetti N, Vescovo R. ORC waste heat recovery in European energy intensive industries: energy and GHG savings. Energy Convers Manag. 2013;76:244–52.

    Article  Google Scholar 

  21. Yu G, Shu G, Tian H, Wei H, Liu L. Simulation and thermodynamic analysis of a bottoming organic Rankine cycle (ORC) of diesel engine (DE). Energy J. 2013;51:281–90.

    Article  CAS  Google Scholar 

  22. Borello D, Del Prete Z, Marchegiani A, Rispoli F, Tortora E. Analysis of an integrated PEMFC/ORC power system using ammonia for hydrogen storage. In: ASME turbo expo 2012: turbine technical conference and exposition. American Society of Mechanical Engineers, pp 143–153. 2012

  23. Zhao P, Wang J, Gao L, Dai Y. Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell. Int J Hydrog Energy. 2012;37(4):3382–91.

    Article  CAS  Google Scholar 

  24. Calise F, d’Accadia MD, Vicidomini M, Scarpellino M. Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and organic Rankine cycle. Energy Convers Manag. 2015;90:347–63.

    Article  Google Scholar 

  25. Ahmadi P, Dincer I, Rosen MA. Development and assessment of an integrated biomass-based multi-generation energy system. Energy J. 2013;56:155–66.

    Article  CAS  Google Scholar 

  26. Yu S, Han J, Lee SM, Lee YD, Ahn KY. A dynamic model of PEMFC system for the simulation of residential power generation. J Fuel Cell Sci Technol. 2010;7(6):061009.

    Article  Google Scholar 

  27. Shabani B, Andrews J. An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system. Int J Hydrog Energy. 2011;36(9):5442–52.

    Article  CAS  Google Scholar 

  28. Colmenar-Santos A, Alberdi-Jiménez L, Nasarre-Cortés L, Mora-Larramona J. Residual heat use generated by a 12 kW fuel cell in an electric vehicle heating system. Energy J. 2014;68:182–90.

    Article  CAS  Google Scholar 

  29. He T, Shi R, Peng J, Zhuge W, Zhang Y. Waste heat recovery of a PEMFC system by using organic Rankine cycle. Energies. 2016;9(4):267.

    Article  Google Scholar 

  30. Førde T, Eriksen J, Pettersen AG, Vie PJ, Ulleberg Ø. Thermal integration of a metal hydride storage unit and a PEM fuel cell stack. Int J Hydrog Energy. 2009;34(16):6730–9.

    Article  Google Scholar 

  31. Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group, pp 265–270. 2011

  32. Lozano GA, Eigen N, Keller C, Dornheim M, Bormann R. Effects of heat transfer on the sorption kinetics of complex hydride reacting systems. Int J Hydrog Energy. 2009;34(4):1896–903.

    Article  CAS  Google Scholar 

  33. Weast RC, Astle MJ, Beyer WH. CRC handbook of chemistry and physics. 64th ed. Boca Raton: CRC Press; 1983.

    Google Scholar 

  34. Zhao P, Wang J, Gao L, Dai Y. Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell. Int J Hydrog Energy. 2012;37(4):3382–91.

    Article  CAS  Google Scholar 

  35. Van Nguyen T, Knobbe MW. A liquid water management strategy for PEM fuel cell stacks. J Power Sources. 2003;114(1):70–9.

    Article  Google Scholar 

  36. Wang C, Nehrir MH, Shaw SR. Dynamic models and model validation for PEM fuel cells using electrical circuits. IEEE Trans Energy Convers. 2005;20(2):442–51.

    Article  Google Scholar 

  37. Desideri A, Gusev S, Van den Broek M, Lemort V, Quoilin S. Experimental comparison of organic fluids for low temperature ORC (organic Rankine cycle) systems for waste heat recovery applications. Energy J. 2016;97:460–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Aghajani Delavar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshpoli, M.A., Ajarostaghi, S.S.M. & Delavar, M.A. Thermodynamic analysis of waste heat recovery from hybrid system of proton exchange membrane fuel cell and vapor compression refrigeration cycle by recuperative organic Rankine cycle. J Therm Anal Calorim 135, 1699–1712 (2019). https://doi.org/10.1007/s10973-018-7338-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7338-0

Keywords

Navigation