Skip to main content

Advertisement

Log in

Evaluation of crystallization technique relating to the physicochemical properties of cinnamic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the crystallization by anti-solvent and sonocrystallization were used for recrystallization of the cinnamic acid (CA), in order to evaluate the influence of these techniques on the modification of the solid-state properties and the aqueous solubility of the CA, since this has low aqueous solubility. The obtained crystals were characterized by differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermogravimetry (TG), powder X-ray diffraction, Fourier transform infrared spectrophotometry (FTIR) and scanning electron microscope (SEM). The effect of recrystallization was also evaluated by particle size and saturation solubility study. In general, the results showed that by the DSC, DTA and TG techniques, the thermal profile of the CA was not altered, as there were no chemical changes in the structure of the CA for the FTIR data, nor any major changes in the crystalline pattern of CA, only some differences in peak intensity. For the analyses of SEM and particle size, a more regular shape and a more even distribution of crystal size were observed after the crystallization process. A slight increase in CA solubility was observed when the solvents methanol and acetic acid were used. Therefore, it is possible to infer that the crystallization techniques used have given modifications in the properties of the solid state that can contribute to the improvement of technological characteristics of the powder favoring the use of CA in several pharmaceutical formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–30.

    CAS  Google Scholar 

  2. Dhumal RS, Biradar SV, Paradkar AR, York P. Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery. Int J Pharm. 2009;368:129–37.

    CAS  PubMed  Google Scholar 

  3. Belkacem N, Salem MAS, Alkhatib HS. Effect of ultrasound on the physico-chemical properties of poorly soluble drugs: antisolvent sonocrystallization of ketoprofen. Powder Technol. 2015;285:16–24.

    CAS  Google Scholar 

  4. Variankaval N, Cote AS. From form to function: crystallization of active pharmaceutical ingredients. AIChE J. 2008;54:1682–8.

    CAS  Google Scholar 

  5. Su CS, Wu PY, Jheng WD. Recrystallization of phenacetin and sulfathiazole using the sonocrystallization process. J Taiwan Inst Chem Eng. 2016;59:106–12.

    CAS  Google Scholar 

  6. Guo Z, Zhang M, Li H, Wang J, Kougoulos E. Effect of ultrasound on anti-solvent crystallization process. J Cryst Growth. 2005;273:555–63.

    CAS  Google Scholar 

  7. Kougoulos E, Marziano I, Miller PR. Lactose particle engineering: influence of ultrasound and anti-solvent on crystal habit and particle size. J Cryst Growth. 2010;312:3509–20.

    CAS  Google Scholar 

  8. Verma S, Gokhale R, Burgess DJ. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm. 2009;380:216–22.

    CAS  PubMed  Google Scholar 

  9. Thorat AA, Dalvi SV. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: recent developments and future perspective. Chem Eng J. 2012;181–182:1–34.

    Google Scholar 

  10. Sun X, Garetz BA, Myerson AS. Supersaturation and polarization dependence of polymorph control in the nonphotochemical laser-induced nucleation (NPLIN) of aqueous glycine solutions. Cryst Growth Des. 2006;6:684–9.

    CAS  Google Scholar 

  11. Muhammad SAFAS, Oubani H, Abbas A, Chan HK, Kwok PCL, Dehghani F. The production of dry powder by the sonocrystallisation for inhalation drug delivery. Powder Technol. 2013;246:337–44.

    CAS  Google Scholar 

  12. Wu HT, Yang MW, Huang SC. Sub-micrometric polymer particles formation by a supercritical assisted atomization process. J Taiwan Inst Chem Eng. 2014;45:1992–2001.

    CAS  Google Scholar 

  13. Figueiras A, Carvalho RA, Ribeiro L, Torres-Labandeira JJ, Veiga FJB. Solid-state characterization and issolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin. Eur J Pharm Biopharm. 2007;67:531–9.

    CAS  PubMed  Google Scholar 

  14. Lyra MAM, Alves LDS, Fontes DAF, Soares Sobrinho JL, Rolim Neto PJ. Ferramentas analíticas aplicadas à caracterização de complexos de inclusão fármaco—ciclodextrina. Rev Ciênc Farm Básica Apl. 2010;31:117–24.

    CAS  Google Scholar 

  15. Soares Sobrinho JL, Soares MFLR, Rolim Neto PJ, Labandeira JJT. Physicochemical study of solid state benznidazole cyclodextrin complexes. J Therm Anal Calorim. 2010;10:10973.

    Google Scholar 

  16. Soares Sobrinho JL, Soares MFLR, Alves LDS, Labandeira JJT, Rolim Neto PJ. Improving the solubility of the antichagasic drug benznidazole through formation of inclusion complex. Quim Nova. 2011;34:1534–8.

    CAS  Google Scholar 

  17. Brittain HG. Characterization of pharmaceutical compounds in the solid state. 2nd ed. Amsterdam: Elsevier Inc.; 2011. p. 11–58.

    Google Scholar 

  18. Madhurambal G, Ravindran B, Mariappan M, Ramamurthi K, Mojumdar SC. Growth and characterization of cinnamic acid–urea single crystal. J Therm Anal Calorim. 2011;104:875–8.

    CAS  Google Scholar 

  19. Souza CMP, Santos JAB, Nascimento AL, Júnior JVC, Júnior FJDLR, Lima Neto SA, Souza FS, Macêdo RO. Thermal analysis study of solid dispersions hydrochlorothiazide. J Therm Anal Calorim. 2018;131:681–9.

    Google Scholar 

  20. Júnior FJDLR, et al. Investigation of the thermal behavior of inclusion complexes with antifungal activity. J Therm Anal Calorim. 2018;133:641–8.

    Google Scholar 

  21. Marques V, Farah A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009;113:1370–6.

    CAS  Google Scholar 

  22. Liu L, et al. Cinnamic acid: a natural product with potential use in cancer intervention. Int J Cancer. 1995;62:345–50.

    CAS  PubMed  Google Scholar 

  23. Murakami FS, et al. Comparative behavior studies of cinnamic acid using isothermal and nonisothermal kinetic methods. Pharm Chem J. 2009;43:716–20.

    CAS  Google Scholar 

  24. Yen GC, Chen YL, Sun FM, Chiang YL, Lu SH, Weng CJ. A comparative study on the effectiveness of cis-and trans-form of cinnamic acid treatments for inhibiting invasive activity of human lung adenocarcinoma cells. Eur J Pharm Sci. 2011;44:281–7.

    CAS  PubMed  Google Scholar 

  25. Jung EH, Kim SR, Hwang IK, Ha TY. Hypoglycemic effects of a phenolic acid fraction of rice bran and ferulic acid in C57BL/KsJ-db/db mice. J Agric Food Chem. 2007;55:9800–4.

    CAS  PubMed  Google Scholar 

  26. Adisakwattana S, Moonsan P, Yibchok-Anun S. Insulin-releasing properties of a series of cinnamic acid derivatives in vitro and in vivo. J Agric Food Chem. 2008;56:7838–44.

    CAS  PubMed  Google Scholar 

  27. Sharma P. Cinnamic acid derivatives: a new chapter of various pharmacological activities. J Chem Pharm Res. 2011;3:403–23.

    CAS  Google Scholar 

  28. Yang C, Zhou Y, Zheng Y, Li C, Sheng S, Wang J, Wu F. Enzymatic modification of chitosan by cinnamic acids: antibacterial activity against Ralstonia solanacearum. Int J Biol Macromol. 2016;87:577–85.

    CAS  PubMed  Google Scholar 

  29. Garcia-Jimenez A, et al. Catalysis and inhibition of tyrosinase in the presence of cinnamic acid and some of its derivatives. Int J Biol Macromol. 2018;119:548–54.

    CAS  Google Scholar 

  30. Medham J, Denney RC, Barnes JD, Thomas M. Análise química quantitativa. 6th ed. Rio de Janeiro: Livros Técnicos e Científicos Editora AS; 2002. p. 265–76.

    Google Scholar 

  31. Higuchi TK, Connors A. Phase-solubility techniques. 1965.

  32. Shayanfar A, Asadpour-Zeynali K, Jouyban A. Solubility and dissolution rate of a carbamazepine–cinnamic acid cocrystal. J Mol Liq. 2013;187:171–6.

    CAS  Google Scholar 

  33. Li W, Zhao X, Sun X, Zu Y, Liu Y, Ge Y. Evaluation of antioxidant ability in vitro and bioavailability of trans-cinnamic acid nanoparticle by liquid antisolvent precipitate. J Nanomater. 2016;2016:84.

    Google Scholar 

  34. Hanai K, Kuwae A, Takai T, Senda H, Kunimoto KK. A comparative vibrational and NMR study of cis-cinnamic acid polymorphs and trans-cinnamic acid. Spectrochim Acta A Mol Biomol Spectrosc. 2001;57:513–9.

    CAS  PubMed  Google Scholar 

  35. Kalinowska M, Świsłocka R, Lewandowski W. The spectroscopic (FT-IR, FT-Raman and 1 H, 13 C NMR) and theoretical studies of cinnamic acid and alkali metal cinnamates. J Mol Struct. 2007;834:572–80.

    Google Scholar 

  36. Vinod KS, Periandy S, Govindarajan M. Spectroscopic analysis of cinnamic acid using quantum chemical calculations. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:808–17.

    CAS  PubMed  Google Scholar 

  37. USP 30. The United States pharmacopeia. 30th ed. Rockville: US Pharmacopeial Convention Inc.; 2007.

    Google Scholar 

  38. Bogdashev NN, Mykots LP, Simonyan AV. Physicochemical characterization of cinnamic acid derivatives. Part 2. Calculation of the temperature of melting and enthalpy of formation by the method of structural analogy. Pharm Chem J. 1998;32:145–8.

    Google Scholar 

  39. Nemen D, Lemos-Senna E. Preparação e caracterização de suspensões coloidais de nanocarreadores lipídicos contendo resveratrol destinados à administração cutânea. Quim Nova. 2011;34:408–13.

    CAS  Google Scholar 

  40. Souza PMS, Lobo FA, Rosa AH, Fraceto LF. Desenvolvimento de nanocápsulas de poli-e-caprolactona contendo o herbicida atrazina. Quim Nova. 2012;35:132–7.

    CAS  Google Scholar 

  41. Shekunov BY, York P. Crystallization processes in pharmaceutical technology and drug delivery design. J Cryst Growth. 2000;211:122–36.

    CAS  Google Scholar 

  42. Chen J, Sarma B, Evans JM, Myerson AS. Pharmaceutical crystallization. Cryst Growth Des. 2011;11:887–95.

    CAS  Google Scholar 

  43. Mota FL, Queimada AJ, Pinho SP, Macedo EA. Aqueous solubility of some natural phenolic compounds. Ind Eng Chem Res. 2008;47:5182–9.

    CAS  Google Scholar 

  44. Strazišar M, Andrenšek S, Šmidovnik A. Effect of b-cyclodextrin on antioxidant activity of coumaric acids. Food Chem. 2008;110:636–42.

    Google Scholar 

  45. Liu B, Zeng J, Chen C, Liu Y, Ma H, Mo H, Liang G. Interaction of cinnamic acid derivatives with β-cyclodextrin in water: experimental and molecular modeling studies. Food Chem. 2016;194:1156–63.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayanne Sales de Araújo Batista.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, R.S.d., Melo, T.B.L., dos Santos, J.A.B. et al. Evaluation of crystallization technique relating to the physicochemical properties of cinnamic acid. J Therm Anal Calorim 138, 3727–3735 (2019). https://doi.org/10.1007/s10973-019-08455-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08455-7

Keywords

Navigation