Skip to main content
Log in

An assessment on the effect of trifluoropropyl-POSS and blend composition on morphological, thermal and thermomechanical properties of PLA/TPU

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of blending ratio and trifluoropropyl polyhedral oligomeric silsesquioxane (POSS) on microstructure, melt and cold crystallization behavior, thermomechanical and thermal stability of melt-blended polylactic acid/thermoplastic polyurethane (PLA/TPU) blends was investigated using various techniques. Morphological observations (TEM and EDX) showed that POSS nanoparticles have a good dispersion state throughout the matrix and localize in both phases and also at the blend interface. POSS nanoparticles hindered the melt crystallization of PLA while enhancing the degree of cold crystallinity of PLA. In addition, the dispersed TPU droplets in PLA matrix induced a nucleation effect on melt crystallization of PLA, especially at low contents. On the contrary, the cold crystallization temperature of PLA shifted to a higher temperature in the presence of TPU phase, but the degree of crystallinity improved in the case of heating with a low rate. Although the addition of TPU to PLA resulted in a decrement in onset degradation temperature, the samples degraded in wider ranges than neat PLA. The onset degradation temperature of samples in inert ambient was declined by the addition of POSS due to its low thermal stability. These nanoparticles slightly enhanced the thermal stability of PLA-rich samples in air ambient but had no sensible effect on TPU-rich samples. The storage modulus values of the PLA/TPU blends gradually decreased with increasing TPU content. In addition, incorporation of POSS nanoparticles, generally, increased the values of storage modulus but reduced the glass transition temperature, proving the lubrication effect of POSS nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luckachan GE, Pillai CKS. Biodegradable polymers—a review on recent trends and emerging perspectives. J Polym Environ. 2011;19:637–76.

    CAS  Google Scholar 

  2. Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295:1009–14.

    CAS  PubMed  Google Scholar 

  3. Aghjeh MR, Kazerouni Y, Otadi M, Khonakdar HA, Jafari SH, Ebadi-Dehaghani H, Mousavi SH. A combined experimental and theoretical approach to quantitative assessment of microstructure in PLA/PP/Organo-Clay nanocomposites; wide-angle x-ray scattering and rheological analysis. Compos Part B Eng. 2018;137:235–46.

    CAS  Google Scholar 

  4. Liu H, Zhang J. Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B Polym Phys. 2011;49:1051–83.

    CAS  Google Scholar 

  5. Ho C-H, Wang C-H, Lin C-I, Lee Y-D. Synthesis and characterization of TPO–PLA copolymer and its behavior as compatibilizer for PLA/TPO blends. Polymer. 2008;49:3902–10.

    CAS  Google Scholar 

  6. López-Rodríguez N, López-Arraiza A, Meaurio E, Sarasua JR. Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends. Polym Eng Sci. 2006;46:1299–308.

    Google Scholar 

  7. Luyt AS, Kelnar I. Effect of blend ratio and nanofiller localization on the thermal degradation of graphite nanoplatelets-modified PLA/PCL. J Therm Anal Calorim. 2018;43:1–10.

    Google Scholar 

  8. Agari Y, Sakai K, Kano Y, Nomura R. Preparation and properties of the biodegradable graded blend of poly(L-lactic acid) and poly(ethylene oxide). J Polym Sci Part B Polym Phys. 2007;45:2972–81.

    CAS  Google Scholar 

  9. Li K, Peng J, Turng L-S, Huang H-X. Dynamic rheological behavior and morphology of polylactide/poly(butylenesadipate-co-terephthalate) blends with various composition ratios. Adv Polym Technol. 2011;30:150–7.

    CAS  Google Scholar 

  10. Al-Itry R, Lamnawar K, Maazouz A. Rheological, morphological, and interfacial properties of compatibilized PLA/PBAT blends. Rheol Acta. 2014;53:501–17.

    CAS  Google Scholar 

  11. Aghjeh MR, Nazari M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G. In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: a combined theoretical and experimental approach. Mater Des. 2015;88:1277–89.

    CAS  Google Scholar 

  12. Li Y, Shimizu H. Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer. Macromol Biosci. 2007;7:921–8.

    CAS  PubMed  Google Scholar 

  13. Zhao F, Huang HX, Zhang SD. Largely toughening biodegradable poly(lactic acid)/thermoplastic polyurethane blends by adding MDI. J Appl Polym Sci. 2015;132:42511.

    Google Scholar 

  14. Finnigan B, Martin D, Halley P, Truss R, Campbell K. Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer. 2004;45:2249–60.

    CAS  Google Scholar 

  15. Seyfi J, Jafari SH, Khonakdar HA, Sadeghi GMM, Zohuri G, Hejazi I, Simon F. Fabrication of robust and thermally stable superhydrophobic nanocomposite coatings based on thermoplastic polyurethane and silica nanoparticles. Appl Surf Sci. 2015;347:224–30.

    CAS  Google Scholar 

  16. Jiao C, Wang H, Chen X, Tang G. Flame retardant and thermal degradation properties of flame retardant thermoplastic Polyurethane based on HGM@[EOOEMIm] [BF 4]. J Therm Anal Calorim. 2019;135:3141–52.

    CAS  Google Scholar 

  17. Jing X, Mi HY, Peng XF, Turng LS. The morphology, properties, and shape memory behavior of polylactic acid/thermoplastic polyurethane blends. Polym Eng Sci. 2015;55:70–80.

    CAS  Google Scholar 

  18. Han JJ, Huang HX. Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci. 2011;120:3217–23.

    CAS  Google Scholar 

  19. Jia S, Wang Z, Zhu Y, Chen L, Fu L. Composites of poly(lactic) acid/thermoplastic polyurethane/mica with compatibilizer: morphology, miscibility and interphase. RSC Adv. 2015;5:98915–24.

    CAS  Google Scholar 

  20. Kaynak C, Meyva Y. Use of maleic anhydride compatibilization to improve toughness and other properties of polylactide blended with thermoplastic elastomers. Polym Adv Technol. 2014;25:1622–32.

    CAS  Google Scholar 

  21. Hong H, Yang L, Yuan Y, Qu X, Chen F, Wei J, Liu C. Preparation, rheological properties and primary cytocompatibility of TPU/PLA blends as biomedical materials. J Wuhan Univ Technol Mater Sci Ed. 2016;31:211–8.

    CAS  Google Scholar 

  22. Jašo V, Glenn G, Klamczynski A, Petrović ZS. Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polym Test. 2015;47:1–3.

    Google Scholar 

  23. Lai S-M, Wu W-L, Wang Y-J. Annealing effect on the shape memory properties of polylactic acid (PLA)/thermoplastic polyurethane (TPU) bio-based blends. J Polym Res. 2016;23:99.

    Google Scholar 

  24. Barmouz M, Behravesh AH. Statistical and experimental investigation on low density microcellular foaming of PLA-TPU/cellulose nano-fiber bio-nanocomposites. Polym Test. 2017;7:300–13.

    Google Scholar 

  25. Kelnar I, Kratochvil J, Fortelny I, Kapralkova L, Zhigunov A, Nevoralova M, Kotrisova M, Khunova V. Influence of clay-nanofiller geometry on the structure and properties of poly(lactic acid)/thermoplastic polyurethane nanocomposites. RSC Adv. 2016;6:30755–62.

    CAS  Google Scholar 

  26. Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC. 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl Mater Interfaces. 2017;9:4015–23.

    CAS  PubMed  Google Scholar 

  27. Yu F, Huang H-X. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym Test. 2015;45:107–13.

    CAS  Google Scholar 

  28. Li G, Wang L, Ni H, Pittman C Jr. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: a review. J Inorg Organomet Polym. 2001;11:123–54.

    CAS  Google Scholar 

  29. Kuo S-W, Chang F-C. POSS related polymer nanocomposites. Prog Polym Sci. 2011;36:1649–96.

    CAS  Google Scholar 

  30. Joshi M, Butola BS. Polymeric nanocomposites—polyhedral oligomeric silsesquioxanes (POSS) as hybrid nanofiller. J Macromol Sci Part C. 2004;44:389–410.

    Google Scholar 

  31. Phillips SH, Haddad TS, Tomczak SJ. Developments in nanoscience: polyhedral oligomericsilsesquioxane (POSS)-polymers. Curr Opin Solid State Mater Sci. 2004;8:21–9.

    CAS  Google Scholar 

  32. Wu J, Mather PT, Polymers POSS. Physical properties and biomaterials applications. Polym Rev. 2009;49:25–63.

    CAS  Google Scholar 

  33. Ayandele E, Sarkar B, Alexandridis P. Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials. 2012;2:445–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Turan D, Sirin H, Ozkoc G. Effects of POSS particles on the mechanical, thermal, and morphological properties of PLA and plasticised PLA. J Appl Polym Sci. 2011;121:1067–75.

    CAS  Google Scholar 

  35. Kodal M, Sirin H, Ozkoc G. Effects of reactive and nonreactive POSS types on the mechanical, thermal, and morphological properties of plasticized poly(lactic acid). Polym Eng Sci. 2014;54:264–75.

    CAS  Google Scholar 

  36. Aghjeh MR, Asadi V, Mehdijabbar P, Khonakdar HA, Jafari SH. Application of linear rheology in determination of nanoclay localization in PLA/EVA/Clay nanocomposites: correlation with microstructure and thermal properties. Compos B Eng. 2016;86:273–84.

    CAS  Google Scholar 

  37. Yazdaninia A, Khonakdar HA, Jafari SH, Asadi V. Influence of trifluoropropyl-POSS nanoparticles on the microstructure, rheological, thermal and thermomechanical properties of PLA. RSC Adv. 2016;6:37149–59.

    CAS  Google Scholar 

  38. Yu J, Qiu Z. Preparation and properties of biodegradable poly(l-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces. 2011;3:890–7.

    CAS  PubMed  Google Scholar 

  39. Pan H, Qiu Z. Biodegradable poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization. Mech Prop Hydrolytic Degrad Macromol. 2010;43:1499–506.

    CAS  Google Scholar 

  40. Asadi V, Jafari SH, Khonakdar HA, Häußler L, Wagenknecht U. Poly(ethylene succinate) nanocomposites containing inorganic WS2 nanotubes with improved thermal properties: a kinetic study. Compos B Eng. 2016;98:496–507.

    CAS  Google Scholar 

  41. Asadi V, Jafari SH, Khonakdar HA, Hauler L, Wagenknecht U. Incorporation of inorganic fullerene-like WS2 into poly(ethylene succinate) to prepare novel biodegradable nanocomposites: a study on isothermal and dynamic crystallization. RSC Adv. 2016;6:4925–35.

    CAS  Google Scholar 

  42. Kratochvil J, Kelnar I. Non-isothermal kinetics of cold crystallization in multicomponent PLA/thermoplastic polyurethane/nanofiller system. J Therm Anal Calorim. 2017;130:3043–52.

    Google Scholar 

  43. Liu Y, Sun Y, Zeng F, Chen Y, Li Q, Yu B, Liu W. Morphology, crystallization, thermal, and mechanical properties of poly(vinylidene fluoride) films filled with different concentrations of polyhedral oligomericsilsesquioxane. Polym Eng Sci. 2013;53:1364–73.

    CAS  Google Scholar 

  44. Mabry JM, Vij A, Iacono ST, Viers BD. Fluorinated polyhedral oligomeric silsesquioxanes (F-POSS). Angew Chem Int Ed. 2008;47:4137–40.

    CAS  Google Scholar 

  45. Aghjeh MR, Khonakdar HA, Jafari SH. Application of mean-field theory in PP/EVA blends by focusing on dynamic mechanical properties in correlation with miscibility analysis. Compos B Eng. 2015;79:74–82.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ali Khonakdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdaninia, A., Jafari, S.H., Ehsani, M. et al. An assessment on the effect of trifluoropropyl-POSS and blend composition on morphological, thermal and thermomechanical properties of PLA/TPU. J Therm Anal Calorim 139, 279–292 (2020). https://doi.org/10.1007/s10973-019-08409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08409-z

Keywords

Navigation