Skip to main content
Log in

Characterization of polypropylene/poly(2,6-dimethyl-1,4-phenylene oxide) blends with improved thermal stability

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this article, the morphological, mechanical and thermal properties of melt blended of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and polypropylene (PP) have been studied. The solubility parameters for the molecular structure of the PP and PPO polymers were calculated using the Hoftyzer-Van k. and Hoy methods. The theoretical calculations reveal that the blend of PP and PPO polymers is immiscible. The miscibility of the PP/PPO blends containing different weight content of PPO (ranging from 5 to 20 wt%) was also evaluated by the scanning electron microscopy. The matrix-dispersed particle structure of the PP/PPO blends confirms the immiscibility of the blends. The flexural stress–strain curves were plotted for the PP and PP/PPO blends. A further improvement has appeared in the values of the bending modulus and strength of the blends comparing with that of the neat PP. The crystallization and melting temperatures of the PP/PPO blend have been evaluated using differential scanning calorimetry. The crystallization temperatures of the PP/PPO blend were shifted toward higher values with the addition of the PPO. One can see that the PPO affected the crystallinity behavior of the PP. Moreover, a significant reduction in thermal degradation rate of the PP/PPO blend was observed with the addition of PPO polymer into the host PP matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zou G, Wu W, Cong C, Meng X, Zhao K, Zhou Q (2016) Improved performance of poly(vinyl pyrrolidone)/phosphonated poly(2,6-dimethyl-1,4-phenylene oxide)/graphitic carbon nitride nanocomposite membranes for high temperature proton exchange membrane fuel cells. RSC Adv 6:106237–106247. https://doi.org/10.1039/C6RA17243A

    Article  CAS  Google Scholar 

  2. Lin CH, Tsai YJ, Shih YS, Chang HC (2014) Catalyst-free synthesis of phosphinated poly(2,6-dimethyl-1,4-phenylene oxide) with high-Tg and low-dielectric characteristic. Polym Degrad Stabil 99:105–110. https://doi.org/10.1016/j.polymdegradstab.2013.11.017

    Article  CAS  Google Scholar 

  3. Jin K, Torkelson JM (2015) Tg and Tg breadth of poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene miscible polymer blends characterized by differential scanning calorimetry, ellipsometry, and fluorescence spectroscopy. Polymer 65:233–242. https://doi.org/10.1016/j.polymer.2015.04.016

    Article  CAS  Google Scholar 

  4. Jin K, Torkelson JM (2017) Tg-confinement effects in strongly miscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene: roles of bulk fragility and chain segregation. Polymer 118:85–96. https://doi.org/10.1016/j.polymer.2017.04.069

    Article  CAS  Google Scholar 

  5. Lee TW, Jeong YG (2014) Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes. Compos Sci Technol 103:78–84. https://doi.org/10.1016/j.compscitech.2014.08.019

    Article  CAS  Google Scholar 

  6. Saron C, Sanchez EMS, Felisberti MI (2007) Thermal and photochemical degradation of PPO/HIPS blends. J Appl Polym Sci 104:3269–3276. https://doi.org/10.1002/app.25671

    Article  CAS  Google Scholar 

  7. Mazard C, Benyahia L, Tassin JF (2003) Dynamic mechanical properties of polystyrene based block copolymers blended with poly(2,6-dimethyl-1,4-phenylene oxide). Polym Int 52:514–521. https://doi.org/10.1002/pi.1073

    Article  CAS  Google Scholar 

  8. Wang X, Feng W, Li H, Ruckenstein E (2002) Optimum toughening via a bicontinuous blending: toughening of PPO with SEBS and SEBS-g-maleic anhydride. Polymer 43(1):37–43. https://doi.org/10.1016/S0032-3861(01)00601-2

    Article  CAS  Google Scholar 

  9. Wu D, Wang X, Jin R (2004) Toughening of poly(2,6-dimethyl-1,4-phenylene oxide)/nylon 6 alloys with functionalized elastomers via reactive compatibilization: morphology, mechanical properties, and rheology. Eur Polym J 40:1223–1232. https://doi.org/10.1016/j.eurpolymj.2004.01.004

    Article  CAS  Google Scholar 

  10. Li B, Wan C, Zhang Y, Ji J (2010) Blends of poly(2,6-dimethyl-1,4-phenylene oxide)/polyamide 6 toughened by maleated polystyrene-based copolymers: mechanical properties, morphology, and rheology. J Appl Polym Sci 115:3385–3392. https://doi.org/10.1002/app.30742

    Article  CAS  Google Scholar 

  11. Wang S, Li B, Zhang Y (2010) Compatibilization of poly(2,6-dimethyl-1,4-phenylene oxide)/polyamide 6 blends with styrene-maleic anhydride copolymer: mechanical properties, morphology, crystallization, and melting behavior. J Appl Polym Sci 118:3545–3551. https://doi.org/10.1002/app.32730

    Article  CAS  Google Scholar 

  12. Wang S, Li B, Zhang Y (2010) Reactive compatibilisation and toughening of poly(2,6 dimethyl-1,4-phenylene oxide)/polyamide 6 blends by maleic grafted styrene ethylene butadiene styrene copolymer and styrene maleic anhydride copolymer. Plast Rubber Compos 39:379–384. https://doi.org/10.1179/174328910X12777566997414

    Article  CAS  Google Scholar 

  13. Puskas JE, Kwon Y, Altstadt V, Kontopoulou M (2007) Blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) with polystyrene-based thermoplastic rubbers: a comparative study. Polymer 48:590–597. https://doi.org/10.1016/j.polymer.2006.11.045

    Article  CAS  Google Scholar 

  14. Peng HQ, Zhou Q, Wang DY, Chen L, Wang YZ (2008) A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems. J Ind Eng Chem 14:589–595. https://doi.org/10.1016/j.jiec.2008.05.011

    Article  CAS  Google Scholar 

  15. Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene. Thin Solid Films 359:1–13. https://doi.org/10.1016/S0040-6090(99)00729-4

    Article  CAS  Google Scholar 

  16. Heino M, Kirjava J, Hietaoja P, SeppäLä J (1997) Compatibilization of polyethylene terephthalate/polypropylene blends with styrene-ethylene/butylene-styrene (SEBS) block copolymers. J Appl Polym Sci 65:241–249. https://doi.org/10.1002/(SICI)1097-4628(19970711)65:2<241:AID-APP4>3.0.CO;2-O

    Article  CAS  Google Scholar 

  17. Madi NK (2013) Thermal and mechanical properties of injection molded recycled high density polyethylene blends with virgin isotactic polypropylene. Mater Des 46:435–441. https://doi.org/10.1016/j.matdes.2012.10.004

    Article  CAS  Google Scholar 

  18. Inuwa IM, Hassan A, Samsudin SA, Mohamad Haafiz MK, Jawaid M (2017) Interface modification of compatibilized polyethylene terephthalate/polypropylene blends: effect of compatibilization on thermomechanical properties and thermal stability. J Vinyl Addit Techn 23(1):45–54. https://doi.org/10.1002/vnl.21484

    Article  CAS  Google Scholar 

  19. Firlik S, Wielgosz Z, Pawlowski S, Tokarz L, Stasinski J, Suwala K (2014) Influence of 2,4,6-trimethylphenol on the yield of synthesis and properties of poly(phenylene oxide). Polimery 59(3):201. https://doi.org/10.14314/polimery.2014.201

    Article  CAS  Google Scholar 

  20. Chen M, Tian G, Zhang Y, Wan C, Zhang Y (2006) Effect of silicon dioxide on crystallization and melting behavior of polypropylene. J Appl Polym Sci 100:1889–1898. https://doi.org/10.1002/app.23315

    Article  CAS  Google Scholar 

  21. van Krevelen DW (1990) Properties of polymers: their correlation with chemical structure, their numerical estimation and prediction from additive group contributions, 3rd edn. Elsevier, New York, pp 189–224

    Google Scholar 

  22. Hoy KL (1970) New values of the solubility parameters from vapor pressure data. J Paint Technol 42:76–118

    CAS  Google Scholar 

  23. Taraghi I, Fereidoon A, Paszkiewicz S, Roslaniec Z (2017) Electrically conductive polycarbonate/ethylene-propylene copolymer/multi-walled carbon nanotubes nanocomposites with improved mechanical properties. J Appl Polym Sci 134(14):10. https://doi.org/10.1002/app.44661

    Article  CAS  Google Scholar 

  24. Cao Y, Feng J, Wu P (2012) Polypropylene-grafted graphene oxide sheets as multifunctional compatibilizers for polyolefin-based polymer blends. J Mater Chem 22:14997–15005. https://doi.org/10.1039/C2JM31477K

    Article  CAS  Google Scholar 

  25. Zhang Q, Yang H, Fu Q (2004) Kinetics-controlled compatibilization of immiscible polypropylene/polystyrene blends using nano-SiO2 particles. Polymer 45:1913–1922. https://doi.org/10.1016/j.polymer.2004.01.037

    Article  CAS  Google Scholar 

  26. Shieh YT, Lee MS, Chen SA (2001) Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. Polymer 42:4439–4448. https://doi.org/10.1016/S0032-3861(00)00567-X

    Article  CAS  Google Scholar 

  27. Jose S, Aprem AS, Francis B, Chandy MC, Werner P, Alstaedt V, Thomas S (2004) Phase morphology, crystallisation behavior and mechanical properties of isotactic polypropylene/high density polyethylene blends. Eur Polym J 40:2105–2115. https://doi.org/10.1016/j.eurpolymj.2004.02.026

    Article  CAS  Google Scholar 

  28. Taraghi I, Fereidoon A, Zamani MM, Mohyeddin A (2015) Mechanical, thermal, and viscoelastic properties of polypropylene/glass hybrid composites reinforced with multiwalled carbon nanotubes. J Compos Mater 49(28):3557–3566. https://doi.org/10.1177/0021998314567697

    Article  CAS  Google Scholar 

  29. Tao Y, Mai K (2007) Non-isothermal crystallization and melting behavior of compatibilized polypropylene/recycled poly(ethylene terephthalate) blends. Eur Polym J 43:3538–3549. https://doi.org/10.1016/j.eurpolymj.2007.05.007

    Article  CAS  Google Scholar 

  30. Wong ACY, Lam F (2002) Study of selected thermal characteristics polypropylene/polyethylene binary blends using DSC and TGA. Polym Test 21:691–696. https://doi.org/10.1016/S0142-9418(01)00144-1

    Article  CAS  Google Scholar 

  31. Abdel-Bary EM, Abdel-Razik EA, Abdelaal MY, El-Sherbiny IM (2005) Stability of polypropylene blends under the effect of thermal and UV degradation. Polym Plast Technol 44:847–862. https://doi.org/10.1081/PTE-200060842

    Article  CAS  Google Scholar 

  32. Fina A, Tabuani D, Camino G (2010) Polypropylene-polysilsesquioxane blends. Eur Polym J 46:14–23. https://doi.org/10.1016/j.eurpolymj.2009.07.019

    Article  CAS  Google Scholar 

  33. Mourad AHI (2010) Thermo-mechanical characteristics of thermally aged polyethylene/polypropylene blends. Mater Des 31:918–929. https://doi.org/10.1016/j.matdes.2009.07.031

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Taraghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paszkiewicz, S., Szymczyk, A., Franciszczak, P. et al. Characterization of polypropylene/poly(2,6-dimethyl-1,4-phenylene oxide) blends with improved thermal stability. Polym. Bull. 75, 3679–3691 (2018). https://doi.org/10.1007/s00289-017-2224-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-017-2224-7

Keywords

Navigation