Skip to main content
Log in

Suitable temperature assignment for liquidus line in SLE investigation by DSC

Consistency tests and uncertainty evaluation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The solid–liquid equilibria (SLE) of two binary mixtures of organic stabilizers for energetic materials, viz. N-(2-methoxyethyl)-p-nitroaniline + 2-nitrodiphenylamine (S1) and N-(2-methoxyethyl)-p-nitroaniline + 1,3-diethyl-1,3-diphenylurea (S2), have been determined using differential scanning calorimetry at three heating rates β (0.5, 1, and 2 K min−1). The liquidus line has been predicted using four characteristic points of the mixture melting curve as follows: the maximum peak temperature (Ttop), the temperature proposed by the German Society of Thermal Analysis (TGEFTA), the inflection point temperature (Tinf), and the endset temperature (Tendset) obtained at β= 1 K min−1 and by extrapolating the three heat flow curves at β= 0 K min−1. The melting temperatures of pure compounds and the eutectics have been identified from the onset temperature obtained at β= 0 K min−1. The quality of the prediction has been evaluated by the computation of the global quality factor from SLE consistency tests and by the estimation of the uncertainty associated with each investigated temperature. It was found that the inflection point displays the highest quality factors and the lowest uncertainties. Moreover, and for practical purposes, the inflection temperature obtained at β= 1 K min−1 generated more consistent data and lowest uncertainties than the other temperatures obtained even at β= 0 K min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Oakley JH, Hughes TJ, Graham BF, Marsh KN, May EF. Determination of melting temperatures in hydrocarbon mixtures by differential scanning calorimetry. J Chem Thermodyn. 2017;108:59–70.

    Article  CAS  Google Scholar 

  2. Leitner J, Jurik S. DSC study and thermodynamic modelling of the system paracetamol–o-acetylsalicylic acid. J Therm Anal Calorim. 2017;130(3):1735–40.

    Article  CAS  Google Scholar 

  3. Chelouche S, Trache D, Neves CM, Pinho SP, Khimeche K, Benziane M. Solid + liquid equilibria and molecular structure studies of binary mixtures for nitrate ester’s stabilizers: measurement and modeling. Thermochim Acta. 2018;666:197–207.

    Article  CAS  Google Scholar 

  4. Silva LPS, Dalmazzone D, Stambouli M, Lesort A-L, Arpentinier P, Trueba A, et al. Phase equilibria of semi-clathrate hydrates of tetra-n-butyl phosphonium bromide at atmospheric pressure and in presence of CH4 and CO2 + CH4. Fluid Phase Equilib. 2016;413:28–35.

    Article  Google Scholar 

  5. Diarce G, Gandarias I, Campos-Celador A, García-Romero A, Griesser U. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50–90 C temperature range. Sol Energy Mater Sol Cells. 2015;134:215–26.

    Article  CAS  Google Scholar 

  6. Wang Y, Wang J, Zhao X, Zhu L, Yang L, Sha Z. Determination and thermodynamic modeling of solid–liquid phase equilibrium for the 2,4,6-trimethylphenol and 2,5-dimethylphenol binary system. J Therm Anal Calorim. 2018;132(3):1923–31.

    Article  CAS  Google Scholar 

  7. Marinescu D-C, Pincu E, Stanculescu I, Meltzer V. Thermal and spectral characterization of a binary mixture (acyclovir and fluocinolone acetonide): eutectic reaction and inclusion complexes with β-cyclodextrin. Thermochim Acta. 2013;560:104–11.

    Article  CAS  Google Scholar 

  8. Okuniewski M, Paduszyński K, Domańska U. Phase diagrams in representative terpenoid systems: measurements and calculations with leading thermodynamic models. Ind Eng Chem Res. 2017;56(34):9753–61.

    Article  CAS  Google Scholar 

  9. Bessa LCBA, Robustillo MD, de Almeida Meirelles AJ, de Alcântara Pessôa Filho P. (Solid + liquid) equilibrium of binary mixtures containing ethyl esters and p-xylene by differential scanning calorimetry. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08085-z

    Article  Google Scholar 

  10. Kousksou T, Jamil A, El Rhafiki T, Zeraouli Y. Paraffin wax mixtures as phase change materials. Sol Energy Mater Sol Cells. 2010;94(12):2158–65.

    Article  CAS  Google Scholar 

  11. Takiyama H, Suzuki H, Uchida H, Matsuoka M. Determination of solid–liquid phase equilibria by using measured DSC curves. Fluid Phase Equilib. 2002;194:1107–17.

    Article  Google Scholar 

  12. Huang C-C, Chen Y-P. Measurements and model prediction of the solid–liquid equilibria of organic binary mixtures. Chem Eng Sci. 2000;55(16):3175–85.

    Article  CAS  Google Scholar 

  13. Lin W, Dalmazzone D, Fürst W, Delahaye A, Fournaison L, Clain P. Accurate DSC measurement of the phase transition temperature in the TBPB–water system. J Chem Thermodyn. 2013;61:132–7.

    Article  CAS  Google Scholar 

  14. Höhne G, Cammenga H, Eysel W, Gmelin E, Hemminger W. The temperature calibration of scanning calorimeters. Thermochim Acta. 1990;160(1):1–12.

    Article  Google Scholar 

  15. Lin W, Dalmazzone D, Fürst W, Delahaye A, Fournaison L, Clain P. Thermodynamic properties of semiclathrate hydrates formed from the TBAB + TBPB + water and CO2 + TBAB + TBPB + water systems. Fluid Phase Equilib. 2014;372:63–8.

    Article  CAS  Google Scholar 

  16. Mayoufi N, Dalmazzone D, Delahaye A, Clain P, Fournaison L, Fürst W. Experimental data on phase behavior of simple tetrabutylphosphonium bromide (TBPB) and mixed CO2 + TBPB semiclathrate hydrates. J Chem Eng Data. 2011;56(6):2987–93.

    Article  CAS  Google Scholar 

  17. Paunovic I, Mehrotra AK. Liquid–solid phase transformation of C16H34, C28H58 and C41H84 and their binary and ternary mixtures. Thermochim Acta. 2000;356(1–2):27–38.

    Article  CAS  Google Scholar 

  18. Hammami A, Mehrotra AK. Liquid–solid–solid thermal behaviour of n-C44H90 + n-C50H102 and n-C25H52 + n-C28H58 paraffinic binary mixtures. Fluid Phase Equilib. 1995;111(2):253–72.

    Article  CAS  Google Scholar 

  19. Chelouche S, Trache D, Tarchoun AF, Abdelaziz A, Khimeche K, Mezroua A. Organic eutectic mixture as efficient stabilizer for nitrocellulose: kinetic modeling and stability assessment. Thermochim Acta. 2019;673:78–91.

    Article  CAS  Google Scholar 

  20. Trache D, Tarchoun AF. Analytical methods for stability assessment of nitrate esters-based propellants. Crit Rev Anal Chem. 2019. https://doi.org/10.1080/10408347.2018.1540921

    Article  PubMed  Google Scholar 

  21. Trache D, Tarchoun AF. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mater Sci. 2018;53(1):100–23.

    Article  CAS  Google Scholar 

  22. Gibson JD. Stabilizers for cross-linked composite modified double base propellants. US Patent 5,387,295; 1995.

  23. Trache D, Khimeche K, Benziane M, Dahmani A. Solid–liquid phase equilibria for binary mixtures of propellant’s stabilizers. J Therm Anal Calorim. 2013;112(1):215–22.

    Article  CAS  Google Scholar 

  24. Lide DR. CRC handbook of chemistry and physics. Boca Raton: CRC; 2012.

    Google Scholar 

  25. Trache D, Khimeche K, Benelmir R, Dahmani A. DSC measurement and prediction of phase diagrams for binary mixtures of energetic materials’ stabilizers. Thermochim Acta. 2013;565:8–16.

    Article  CAS  Google Scholar 

  26. Książczak A, Książczak T, Ostrowski M. Intermolecular interactions and phase equilibria in nitrocellulose-s-diethyldiphenylurea system. J Therm Anal Calorim. 2003;74(2):575–81.

    Article  Google Scholar 

  27. Keshavarz MH, Akbarzadeh AR, Rahimi R, Jafari M, Pasandideh M, Sadeghi R. A reliable method for prediction of enthalpy of fusion in energetic materials using their molecular structures. Fluid Phase Equilib. 2016;427:46–55.

    Article  CAS  Google Scholar 

  28. Jain A, Yang G, Yalkowsky SH. Estimation of melting points of organic compounds. Ind Eng Chem Res. 2004;43(23):7618–21.

    Article  CAS  Google Scholar 

  29. Chelouche S, Trache D, Pinho SP, Khimeche K, Mezroua A, Benziane M. Solid–liquid phase equilibria, molecular interaction and microstructural studies on (N-(2-ethanol)-p-nitroaniline + N-(2-acetoxyethyl)-p-nitroaniline) binary mixtures. Int J Thermophys. 2018;39(11):129.

    Article  Google Scholar 

  30. Saeed RM, Schlegel J, Castano C, Sawafta R. Uncertainty of thermal characterization of phase change material by differential scanning calorimetry analysis. Int J Eng Res Technol. 2016;5(1):405–12.

    Google Scholar 

  31. He B, Martin V, Setterwall F. Liquid–solid phase equilibrium study of tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for comfort cooling storage. Fluid Phase Equilib. 2003;212(1–2):97–109.

    Article  CAS  Google Scholar 

  32. Kang JW, Diky V, Chirico RD, Magee JW, Muzny CD, Kazakov AF, et al. Algorithmic framework for quality assessment of phase equilibrium data. J Chem Eng Data. 2014;59(7):2283–93.

    Article  CAS  Google Scholar 

  33. Chabane S, Benziane M, Khimeche K, Trache D, Didaoui S, Yagoubi N. Low-temperature behavior of diesel/biodiesel blends. J Therm Anal Calorim. 2018;131(2):1615–24.

    Article  CAS  Google Scholar 

  34. Rajan A, Kuang YC, Ooi MP-L, Demidenko S, editors. Standard uncertainty estimation on polynomial regression models. In: IEEE Sensors Applications Symposium, Queenstown, New Zealand; 2014.

  35. Gelman A, Imbens G. Why high-order polynomials should not be used in regression discontinuity designs. J Bus Econ Stat. 2018. https://doi.org/10.1080/07350015.2017.1366909

    Article  Google Scholar 

  36. Campanella L, Micieli V, Tomassetti M, Vecchio S. Solid–liquid phase diagrams of binary mixtures. J Therm Anal Calorim. 2010;99(3):887–92.

    Article  CAS  Google Scholar 

  37. Hernandez FR, Djurdjevic M, Kierkus W, Sokolowski J. Calculation of the liquidus temperature for hypo and hypereutectic aluminum silicon alloys. Mater Sci Eng A. 2005;396(1–2):271–6.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of this research from Ecole Militaire Polytechnique (Doctoral Training Program).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salim Chelouche or Djalal Trache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chelouche, S., Trache, D. & Khimeche, K. Suitable temperature assignment for liquidus line in SLE investigation by DSC. J Therm Anal Calorim 139, 475–487 (2020). https://doi.org/10.1007/s10973-019-08392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08392-5

Keywords

Navigation