Skip to main content
Log in

Low-temperature behavior of diesel/biodiesel blends

Solid–liquid phase diagrams of binary mixtures composed of fatty acid ethyl esters and alkanes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid–liquid equilibria for three binary mixtures, ethyl myristate (1) + n-tetradecane (2), ethyl myristate (1) + n-hexadecane (2) and ethyl palmitate (1) + n-octadecane (2), were measured using a differential scanning calorimeter. Simple eutectic behavior was observed for these systems. The experimental results were correlated and compared by means of the UNIFAC original, NRTL, WILSON, UNIQUAC and ideal models. The root-mean-square deviations of the solubility temperatures for all measured data vary from 0.32 to 1.80 K and depend on the particular model used. The best solubility correlation was obtained with the UNIQUAC models. It was found out that all the systems are eutectic and globally good agreement is obtained between experimental and predicted SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev. 2006;10(3):248–68. doi:10.1016/j.rser.2004.09.002.

    Article  CAS  Google Scholar 

  2. Hossain A, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M. Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol. 2008;4(3):250–4.

    Article  CAS  Google Scholar 

  3. Zobaa AF, Bansal RC. Handbook of Renewable Energy Technology. Singapore: World Scientific; 2011.

    Book  Google Scholar 

  4. Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25(3):294–306. doi:10.1016/j.biotechadv.2007.02.001.

    Article  CAS  Google Scholar 

  5. Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96. doi:10.1263/jbb.101.87.

    Article  CAS  Google Scholar 

  6. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, et al. Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol. 2010;21(3):277–86. doi:10.1016/j.copbio.2010.03.005.

    Article  CAS  Google Scholar 

  7. Shay EG. Diesel fuel from vegetable oils: status and opportunities. Biomass Bioenergy. 1993;4(4):227–42. doi:10.1016/0961-9534(93)90080-N.

    Article  CAS  Google Scholar 

  8. Benziane M, Khimeche K, Dahmani A, Nezar S, Trache D. Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids. Mol Phys. 2012;110(11–12):1383–9.

    Article  CAS  Google Scholar 

  9. Antolín G, Tinaut FV, Briceño Y, Castaño V, Pérez C, Ramírez AI. Optimisation of biodiesel production by sunflower oil transesterification. Bioresour Technol. 2002;83:111–4. doi:10.1016/S0960-8524(01)00200-0.

    Article  Google Scholar 

  10. Alves JCL, Poppi RJ. Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM). Talanta. 2013;104:155–61. doi:10.1016/j.talanta.2012.11.033.

    Article  CAS  Google Scholar 

  11. Benziane M, Dahmani KKA, Trache D. Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids methyl esters. J Thermal Anal Calorim. 2013;112(1):229–35.

    Article  CAS  Google Scholar 

  12. Analysis of Biodiesel Blend Samples Collected in the United States In 2008. BiblioBazaar; 2012.

  13. Benziane M, Khimeche K, Dahmani A, Nezar S, Trache D. Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids methyl esters. J Thermal Anal Calorim. 2013;112(1):229–35. doi:10.1007/s10973-012-2654-2.

    Article  CAS  Google Scholar 

  14. Rao YVH, Voleti RS, Hariharan VS, Sitarama Raju AV, Redd PN. Use of Jatropha oil methyl ester and its blends as an alternative fuel in diesel engine. J Braz Soc Mech Sci Eng. 2009;31:253–60.

    Article  Google Scholar 

  15. Benziane M, Khimeche K, Dahmani A, Trache D, editors. Experimental determination and prediction of liquid-solid equilibria for binary (methyl palimitate + naphthalene) mixture. In: MATEC Web of Conferences; 2013: EDP Sciences.

  16. Boros LAD, Batista MLS, Coutinho JAP, Krähenbühl MA, Meirelles AJA, Costa MC. Binary mixtures of fatty acid ethyl esters: solid–liquid equilibrium. Fluid Phase Equilib. 2016;427:1–8. doi:10.1016/j.fluid.2016.06.039.

    Article  CAS  Google Scholar 

  17. Costa MC, Boros LAD, Batista MLS, Coutinho JAP, Krähenbühl MA, Meirelles AJA. Phase diagrams of mixtures of ethyl palmitate with fatty acid ethyl esters. Fuel. 2012;91(1):177–81. doi:10.1016/j.fuel.2011.07.018.

    Article  CAS  Google Scholar 

  18. Benziane M, Khimeche K, Mokbel I, Trache D, Yagoubi N, Jose J. Phase equilibrium properties of binary mixtures containing a diesel compound (n-dodecane) + biodiesel compounds (ethyl hexanoate, ethyl decanoate and ethyl tetradecanoate). Journal of Thermal Analysis and Calorimetry. 2016:1-10.

  19. Testing ASf, Materials. 2015 Annual Book of ASTM Standards. 2015.

  20. Benziane M, Khimeche K, Mokbel I, Dahmani A, Jose J. Isothermal vapor–liquid equilibria of n-tetradecane + Ethyl hexanoate, ethyl decanoate, and ethyl tetradecanoate. J Chem Eng Data. 2013;58(2):492–8. doi:10.1021/je301294a.

    Article  CAS  Google Scholar 

  21. Benziane M, Khimeche K, Mokbel I, Sawaya T, Dahmani A, Jose J. Experimental vapor pressures of five saturated fatty acid ethyl ester (FAEE) components of biodiesel. J Chem Eng Data. 2011;56(12):4736–40. doi:10.1021/je200730m.

    Article  CAS  Google Scholar 

  22. Benziane M, Khimeche K, Mokbel I, Trache D, Yagoubi N, Jose J. Phase equilibrium properties of binary mixtures containing a diesel compound (n-dodecane) + biodiesel compounds (ethyl hexanoate, ethyl decanoate and ethyl tetradecanoate). J Thermal Anal Calorim. 2016;126(2):845–54. doi:10.1007/s10973-016-5561-0.

    Article  CAS  Google Scholar 

  23. Gmehling J, Li J, Schiller M. A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Ind Eng Chem Res. 1993;32(1):178–93. doi:10.1021/ie00013a024.

    Article  CAS  Google Scholar 

  24. Kontogeorgis GM, Folas GK. Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. Hoboken: Wiley; 2009.

    Google Scholar 

  25. Larsen BL, Rasmussen P, Fredenslund A. A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing. Ind Eng Chem Res. 1987;26(11):2274–86. doi:10.1021/ie00071a018.

    Article  CAS  Google Scholar 

  26. Mukhopadhyay M, Sahasranaman K. Computation of multicomponent liquid-liquid equilibrium data for aromatics extraction systems. Ind Eng Chem Process Des Dev. 1982;21(4):632–40. doi:10.1021/i200019a016.

    Article  CAS  Google Scholar 

  27. Coutinho JAP. Predictive local composition models: NRTL and UNIQUAC and their application to model solid–liquid equilibrium of n-alkanes. Fluid Phase Equilib. 1999;158–160:447–57. doi:10.1016/S0378-3812(99)00085-0.

    Article  Google Scholar 

  28. Pierre Monfort J, De Lourdes Rojas RM. A study of simplified molecular models in phase equilibrium prediction. Fluid Phase Equilib. 1978;2(3):181–98. doi:10.1016/0378-3812(78)80008-9.

    Article  Google Scholar 

  29. Renon H, Prausnitz JM. Estimation of parameters for the NRTL equation for excess gibbs energies of strongly nonideal liquid mixtures. Ind Eng Chem Process Des Dev. 1969;8(3):413–9. doi:10.1021/i260031a019.

    Article  CAS  Google Scholar 

  30. Yu Y, Zhang F, Gao X, Xu L, Liu G. Solid-liquid equilibrium and phase diagram for the ternary (2-naphthaldehyde + o-phthalic anhydride + 1,4-dioxane) system. J Chem Thermodyn. 2016;101:308–15. doi:10.1016/j.jct.2016.06.011.

    Article  CAS  Google Scholar 

  31. Renon H, Prausnitz JM. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14(1):135–44. doi:10.1002/aic.690140124.

    Article  CAS  Google Scholar 

  32. Wilson GM. Vapor-liquid equilibrium. XI. A new expression for the excess free energy of mixing. J Am Chem Soc. 1964;86(2):127–30. doi:10.1021/ja01056a002.

    Article  CAS  Google Scholar 

  33. Trache D, Khimeche K, Dahmani A. study of (solid–liquid) phase equilibria for mixtures of energetic material stabilizers and prediction for their subsequent performance. Int J Thermophys. 2013;34(2):226–39. doi:10.1007/s10765-013-1404-4.

    Article  CAS  Google Scholar 

  34. Khimeche K, Dahmani A. Determination by DSC of solid–liquid diagrams for polyaromatic—4,4′diaminodiphenylmethanebinary systems. J Thermal Anal Calorim. 2006;84(1):47–52. doi:10.1007/s10973-005-7167-9.

    Article  CAS  Google Scholar 

  35. Khimeche K, Boumrah Y, Benziane M, Dahmani A. Solid–liquid equilibria and purity determination for binary n-alkane + naphthalene systems. Thermochim Acta. 2006;444(2):166–72.

    Article  CAS  Google Scholar 

  36. Chevallier V, Petitjean D, Ruffier-Meray V, Dirand M. Correlations between the crystalline long c-parameter and the number of carbon atoms of pure n-alkanes. Polymer. 1999;40(21):5953–6. doi:10.1016/S0032-3861(99)00045-2.

    Article  CAS  Google Scholar 

  37. Won KW. Thermodynamics for solid solution-liquid-vapor equilibria: wax phase formation from heavy hydrocarbon mixtures. Fluid Phase Equilib. 1986;30:265–79. doi:10.1016/0378-3812(86)80061-9.

    Article  CAS  Google Scholar 

  38. Sohns J, Seifert B, Hahne E. The effect of impurities on the melting temperature and the heat of fusion of latent heat storage materials. Int J Thermophys. 1981;2(1):71–87. doi:10.1007/bf00503576.

    Article  CAS  Google Scholar 

  39. Boros L, Batista MLS, Vaz RV, Figueiredo BR, Fernandes VFS, Costa MC, et al. Crystallization behavior of mixtures of fatty acid ethyl esters with ethyl stearate. Energy Fuels. 2009;23(9):4625–9. doi:10.1021/ef900366z.

    Article  CAS  Google Scholar 

  40. Bo H, Gustafsson EM, Setterwall F. Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems. Energy. 1999;24(12):1015–28. doi:10.1016/S0360-5442(99)00055-9.

    Article  CAS  Google Scholar 

  41. Domańska U, Morawski P. Solid + liquid equilibria of (n-alkane + cyclohexane) mixtures at high pressures. Fluid Phase Equilib. 2004;218(1):57–68. doi:10.1016/j.fluid.2003.11.017.

    Article  Google Scholar 

  42. Costa MC, Boros LAD, Coutinho JAP, Krähenbühl MA, Meirelles AJA. Low-temperature behavior of biodiesel: solid–liquid phase diagrams of binary mixtures composed of fatty acid methyl esters. Energy Fuels. 2011;25(7):3244–50. doi:10.1021/ef2004199.

    Article  CAS  Google Scholar 

  43. Robustillo MD, Barbosa DF. Meirelles AJdA, Pessôa Filho PdA. Solid–liquid equilibrium in ternary mixtures of ethyl laurate, ethyl palmitate and ethyl myristate. Fluid Phase Equilib. 2014;361:188–99. doi:10.1016/j.fluid.2013.10.024.

    Article  CAS  Google Scholar 

  44. Prausnitz JM, Lichtenthaler RN, de Azevedo EG. Molecular thermodynamics of fluid-phase equilibria. London: Pearson Education; 1998.

    Google Scholar 

  45. Coutinho JAP, Andersen SI, Stenby EH. Solid–liquid equilibrium of n-alkanes using the chain delta lattice parameter model. Fluid Phase Equilib. 1996;117(1):138–45. doi:10.1016/0378-3812(95)02946-X.

    Article  CAS  Google Scholar 

  46. Domanska U, Groves FR, McLaughlin E. Solid–liquid phase equilibria of binary and ternary mixtures of benzene and polynuclear aromatic compounds. J Chem Eng Data. 1993;38(1):88–94. doi:10.1021/je00009a021.

    Article  CAS  Google Scholar 

  47. Pan C, Radosz M. Modeling of solid–liquid equilibria in naphthalene, normal-alkane and polyethylene solutions. Fluid Phase Equilib. 1999;155(1):57–73. doi:10.1016/S0378-3812(98)00454-3.

    Article  CAS  Google Scholar 

  48. Nelder JA, Mead R. A simplex method for function minimization. Comput J. 1965;7(4):308–13. doi:10.1093/comjnl/7.4.308.

    Article  Google Scholar 

  49. Hofman T, Nagata I. Determination of association constants for alcohols based on ethers as homomorphs. Fluid Phase Equilib. 1986;25(2):113–28. doi:10.1016/0378-3812(86)80009-7.

    Article  CAS  Google Scholar 

  50. Kniaz K. Fluid Phase Equilib. 68. 1991:35–46.

  51. Knothe G, Dunn RO. A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. J Am Oil Chem Soc. 2009;86(9):843–56. doi:10.1007/s11746-009-1423-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Benziane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chabane, S., Benziane, M., Khimeche, K. et al. Low-temperature behavior of diesel/biodiesel blends. J Therm Anal Calorim 131, 1615–1624 (2018). https://doi.org/10.1007/s10973-017-6614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6614-8

Keywords

Navigation