Skip to main content
Log in

Comparative study of the thermo-catalytic degradation of waste frying and Pachira aquatica Aubl. oil in the presence of Mo/KIT-6

Kinetic and TGA-FTIR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The search for a drop-in fuel obtained from residual biomass or oilseed that does not compete with food, as Pachira aquatica Aubl. oil has been imputing the research. This work focused on the characterization and application of the support (KIT-6) catalyst (Mo/KIT-6) in pyrolysis of the waste frying and P. Aquatica Aubl. oil through a kinetic study by thermogravimetry (TGA/DTG) technique and thermogravimetry coupled with Fourier-transform infrared spectrophotometer (TGA-FTIR). The supports and catalysts were characterized by different techniques such as X-ray diffraction, thermal analysis (TGA/DTG), adsorption and desorption of N2 and scanning electron microscopy coupled with energy-dispersive X-ray analysis (EDS). The support and catalyst presented good structural organization and textured properties, showing that the structuring of KIT-6 was achieved and that in the impregnated form, Mo/KIT-6 presented the Mo dispersion by the surface of the support. Kinetic study pyrolysis of oils was performed using the iso-conversional method proposed by Kissinger–Akahira–Sunose which was applied to determine the activation energy (Ea) of without (thermal pyrolysis) and with the catalyst (thermal/catalytic pyrolysis) in the study. The presence of catalysts on volatilization/pyrolysis of oils showed no significant reduction in activation energy (< 10 kJ mol−1), considering the 50% conversion. In TG-FTIR, the results observed that the presence of Mo/KIT-6 promotes deoxygenation, which is enough to improve the quality of bio-oil obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nigam PS, Singh A. Production of liquid biofuels from renewable resources. Progress Energy Combust Sci. 2011. https://doi.org/10.1016/j.pecs.2010.01.003.

    Article  Google Scholar 

  2. Gumisiriza R, Hawumba JF, Okure M, Hensel O. Biomass waste-to-energy valorization technologies: a review case for banana processing in Uganda. Biotechnol Biofuels. 2017. https://doi.org/10.1186/s13068-016-0689-5.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jacobson K, Maherua KC, Dalai AK. Bio-oil valorization: a review. Renew Sustain Energy Rev. 2013. https://doi.org/10.1016/j.rser.2012.04.028.

    Article  Google Scholar 

  4. Wu L, Guo S, Wang C, Yang Z. Production of alkanes (C7–C29) from different part of poplar tree via direct deoxy-liquefaction. Bioresour Technol. 2009. https://doi.org/10.5424/fs/2012212-02634.

    Article  PubMed  Google Scholar 

  5. Qiang L, Wen-Zhi L, Xi-Feng Z. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag. 2009. https://doi.org/10.1021/ef034067u.

    Article  Google Scholar 

  6. Bridgwater AV. Catalysis in thermal biomass conversion. Appl Catal A. 1994. https://doi.org/10.1016/0926-860X(94)80278-5.

    Article  Google Scholar 

  7. Bridgwater AV, Peacoke GVC. Fast pyrolysis processes for biomass. Renew Sustain Energy Rev. 2000;1:10. https://doi.org/10.1016/S1364-0321(99)00007-6.

    Article  Google Scholar 

  8. Mohan D, Pittman CU, Steele PH. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels. 2009. https://doi.org/10.1021/ef0502397.

    Article  Google Scholar 

  9. Williams PT, Nugranad N. Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks. Energy. 2000. https://doi.org/10.1016/S0360-5442(00)00009-8.

    Article  Google Scholar 

  10. Chew TL, Bhatia S. Effect of catalyst additives on the production of biofuels from palm oil cracking in a transport riser reactor. Bioresour Technol. 2009. https://doi.org/10.1016/j.biortech.2008.12.021.

    Article  PubMed  Google Scholar 

  11. Zhang L, Hu G. Supply chain design and operational planning models for biomass to drop-in fuel production. Biomass Bioenergy. 2013. https://doi.org/10.1016/j.biombioe.2013.08.016.

    Article  Google Scholar 

  12. Falahati M, Ma’Mani L, Saboury AA, Shafiee A, Foroumadi A, Badiei AR. Aminopropyl-functionalized cubic Ia3d mesoporous sílica nanoparticle as an efficient support for immobilization for superoxide dismutase. Biochem Biophys Acta. 2011. https://doi.org/10.1016/j.bbapap.2011.04.005.

    Article  PubMed  Google Scholar 

  13. Soni K, Rana BS, Sinha AK, Bhaumik A, Nandi M, Kumar M, Dhar GM. 3-D ordered mesoporous KIT-6 support for effective hydrodesulfurization catalysts. Appl Catal B. 2009;1:10. https://doi.org/10.1016/j.apcatb.2009.02.010.

    Article  CAS  Google Scholar 

  14. Soni K, Mouli KC, Dalai AK, Adjaye J. Influence of frame connectivity of SBA-15 and KIT-6 supported NiMo catalysts for hydrotreating of gas oil. Catalysis. 2010. https://doi.org/10.1007/s10562-010-0317-0.

    Article  Google Scholar 

  15. Boulaoued A, Fechete I, Donnio B, Bernard D, Turek P, Garin F. Mo/KIT-6, Fe/KIT-6 and Mo–Fe/KIT-6 as new types of heterogeneous catalysts for the conversion of MCP. Microporous Mesoporous Mater. 2012. https://doi.org/10.1016/j.micromeso.2012.01.028.

    Article  Google Scholar 

  16. Lan H, Xiao X, Yuan S, Zhang B, Zhou G, Jiang Y. Synergistic Effect of Mo–Fe bimetal oxides promoting catalytic conversion of glycerol to allyl alcohol. Catal Lett. 2017. https://doi.org/10.1007/s10562-017-2124-3.

    Article  Google Scholar 

  17. Qian L, Ren Y, Liu T, Pan D, Wang H, Chen G. Influence of KIT-6’s pore structure on its surface properties evaluated by inverse gas chromatography. Chem Eng J. 2012. https://doi.org/10.1016/j.cej.2012.09.110.

    Article  Google Scholar 

  18. Duan A, Lia T, Zhao Z, Liua B, Zhou X, Jiang G, Liu J, Wei Y, Pan H. Synthesis of hierarchically porous L-KIT-6 silica–alumina material and the super catalytic performances for hydrodesulfurization of benzothiophene. Appl Catal B. 2015. https://doi.org/10.1016/j.apcatb.2014.10.078.

    Article  Google Scholar 

  19. Simacek P, Kubicka D, Sebor G, Pospisil M. Fuel properties of hydroprocessed rapeseed oil. Fuel. 2010. https://doi.org/10.1016/j.fuel.2009.09.017.

    Article  Google Scholar 

  20. Kubicka D, Kaluza L. Deoxygenation of vegetable oils over sulfided Ni, Mo and NiMo catalysts. Appl Catal A. 2010. https://doi.org/10.1016/j.apcata.2009.10.034.

    Article  Google Scholar 

  21. Kok MV, Topa E. Thermal characterization and model-free kinetics of biodiesel sample. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-015-4814-7.

    Article  Google Scholar 

  22. Twaiq FA, Mohamed AR, Bhatia S. Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous Mesoporous Mater. 2003. https://doi.org/10.1016/j.micromeso.2003.06.001.

    Article  Google Scholar 

  23. Ooi Y, Zakaria R, Mohamed AR, Bhatia S. Synthesis of composite material MCM-41/beta and its catalytic performance in waste used palm oil cracking. Appl Catal A Gen. 2004. https://doi.org/10.1016/j.apcata.2004.05.011.

    Article  Google Scholar 

  24. de Oliveira Maiax Maia D, de Souzachagas AM, de Morais Araújo AM, de Mendonça AV, de Lima Ferreira IM, Lemos FCD, Araujo AS, Fernandes VJ, Gondim AD. Catalytic pyrolysis of glycerol in the presence of Nickel(II) Schiff base complex supported in SBA-15: kinetic and products (TG–FTIR and PY-CG/MS). Thermochim Acta. 2018;669:160–8.

    Article  Google Scholar 

  25. Kleitz F, Choi SH, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun. 2003;17:2136–7. https://doi.org/10.1039/b306504a.

    Article  CAS  Google Scholar 

  26. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57(4):2712–2716. https://nvlpubs.nist.gov/nistpubs/jres/057/jresv57n4p217_a1b.pdf.

    Article  CAS  Google Scholar 

  27. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol. 1971;16:22–31.

    Google Scholar 

  28. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  29. Liu Y, Shi J, Chen J, Ye Q, Hua Pan, Shao Z, Shi Y. Dynamic performance of CO2 adsorption with tetraethylenepentamine-loaded KIT-6. Microporous Mesoporous Mater. 2010. https://doi.org/10.1016/j.micromeso.2010.05.002.

    Article  Google Scholar 

  30. Selvaraj M, Kawi S, Park DW, Ha CS, Merit JA. Synthesis of well-ordered two-dimensional mesoporous niobium silicate materials with enhanced hydrothermal stability and catalytic activity. Phys Chem. 2009. https://doi.org/10.1021/jp811334r.

    Article  Google Scholar 

  31. Liu X, Tian B, Yu C, Gao F, Xie S, Tu B, Che R, Peng LM, Zhao D. Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry. Angew Chem. 2012. https://doi.org/10.1002/1521-3757(20021018)114:20%3c4032:AID-ANGE4032%3e3.0.CO;2-6.

    Article  Google Scholar 

  32. Ramanathan A, Maheswari R, Barich DH, Subramaniam B. Niobium incorporated mesoporous silicate, Nb-KIT-6: synthesis and characterization. Microporous Mesoporous Mater. 2014. https://doi.org/10.1016/j.micromeso.2014.02.019.

    Article  Google Scholar 

  33. Subramaniyan K, Arumugam P. Sulfated niobia supported on KIT-6 as a catalyst for transesterification of groundnut oil. J Porous Mater. 2016. https://doi.org/10.1007/s10934-015-0118-3.

    Article  Google Scholar 

  34. Atchudan R, Joo J, Pandurangan A. An efficient synthesis of graphenated carbon nanotubes over the tailored mesoporous molecular sieves by chemical vapor deposition. Mater Res Bull. 2013. https://doi.org/10.1016/j.materresbull.2013.02.048.

    Article  Google Scholar 

  35. Dai W, Zheng M, Zhao Y, Liao S, Ji G, Cao J. Template synthesis of three-dimensional cubic ordered mesoporous carbon with tunable pore sizes. Nanoscale Res Lett. 2010. https://doi.org/10.1007/s11671-009-9450-3.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Subramaniyan K, Arumugam P. Sulfated niobia supported on KIT-6 as a catalyst for transesterification of groundnut oil. J Porous Mater. 2016;23:639–46. https://doi.org/10.1007/s10934-015-0118-3.

    Article  CAS  Google Scholar 

  37. Subhan F, Aslan S, Yan Z, Ikram M, Rehman S. Enhanced desulfurization characteristics of Cu-KIT-6 for thiophene. Microporous Mesoporous Mater. 2014. https://doi.org/10.1016/j.micromeso.2014.08.018.

    Article  Google Scholar 

  38. Kishor R, Ghoshal AK. APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chem Eng J. 2015. https://doi.org/10.1016/j.cej.2014.10.039.

    Article  Google Scholar 

  39. Varfolomeev AM, Nagrimanov RN, Galukhin AV, Vakhin AV, Solomonov BN, Nurgaliev DK, Kok MV. Contribution of thermal analysis and kinetics of Siberian and Tatarstan regions crude oils for in situ combustion process. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-015-4892-6.

    Article  Google Scholar 

  40. Kok MV, Topa E. Thermal characterization and model-free kinetics of biodiesel sample. J Therm Anal Calorim. 2015. https://doi.org/10.1007/s10973-015-4814-7.

    Article  Google Scholar 

  41. Figen AK, Ismail O, Piski S. Devolatilization non-isothermal kinetic analysis of agricultural stalks and application of TG-FT/IR analysis. J Therm Anal Calorim. 2012. https://doi.org/10.1007/s10973-011-1959-x.

    Article  Google Scholar 

  42. Twaiq FA, Mohamed AR, Bhatia S. Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios. Microporous Mesoporous Mater. 2003. https://doi.org/10.1016/j.micromeso.2003.06.001.

    Article  Google Scholar 

  43. Ooi Y, Zakaria R, Mohamed AR, Bhatia S. Synthesis of composite material MCM-41/Beta and its catalytic performance in waste used palm oil cracking. Appl Catal A Gen. 2004. https://doi.org/10.1016/j.micromeso.2003.06.001.

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnologico) for financial support, PPGQ/UFRN (Programa de Pós Graduação em Química) and Chemistry Institute/UFRN for facilities and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Duarte Gondim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Mendonça Júnior, A.V., de Morais Araújo, A.M., Fernandes, V.J. et al. Comparative study of the thermo-catalytic degradation of waste frying and Pachira aquatica Aubl. oil in the presence of Mo/KIT-6. J Therm Anal Calorim 139, 535–544 (2020). https://doi.org/10.1007/s10973-019-08390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08390-7

Keywords

Navigation