Skip to main content
Log in

Aloe vera leaf extract-assisted facile green synthesis of amorphous Fe2O3 for catalytic thermal decomposition of ammonium perchlorate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fe2O3 is a well-known catalyst for thermal decomposition of ammonium perchlorate (AP). Amorphous Fe2O3 nanoflakes were biosynthesised by a novel sol–gel method using Aloe vera leaf extract, and its catalytic effect on thermal decomposition of AP was investigated. The precursor ferric nitrate–Aloe vera gel was calcined at three different temperatures. The oxides were characterised by Fourier-transform infrared spectroscopy, X-ray powder diffraction, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy. Microscopy analyses revealed that Fe2O3-250 consists of a porous structure as aggregates of many nanoflakes of ~ 2 nm diameter. The catalytic activity of the synthesised products on thermal decomposition of AP was evaluated using thermogravimetry–differential scanning calorimetry. The presence of 2.0% of mesoporous Fe2O3-250 catalyst (surface area of 208 m2 g−1) enhanced the rate of high-temperature decomposition of AP by decreasing the peak decomposition temperature from 367 to 337 °C. Average activation energy of thermal decomposition of AP was calculated using Flynn–Wall–Ozawa method reduced from 145 to 128 kJ mol−1 in the presence of the catalyst. The high surface area of mesoporous Fe2O3-250 originated from its amorphous nature makes it a potential catalyst for thermal decomposition of AP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Xu J, Li S, Tan L, Kou B. Enhanced catalytic activity of mesoporous graphitic carbon nitride on thermal decomposition of ammonium perchlorate via copper oxide modification. Mater Res Bull. 2017;93:352–9.

    CAS  Google Scholar 

  2. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    CAS  Google Scholar 

  3. Jacobs PWM, Whitehead HM. Decomposition and combustion of ammonium perchlorate. Chem Rev. 1968;69:551–90.

    Google Scholar 

  4. Yu Z, Sun Y, Wei W, Lu L, Wang X. Preparation of NdCrO3 nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate by DSC/TG-MS. J Therm Anal Cal. 2009;97:903–7.

    CAS  Google Scholar 

  5. Paulose S, Raghavan R, George BK. Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2015;606:34–7.

    Google Scholar 

  6. Ma Z, Li F, Bai H. Effect of Fe2O3 in Fe2O3/AP composite particles on thermal decomposition of AP and on burning rate of the composite propellant. Prop Explos Pyrotech. 2006;31:447–51.

    CAS  Google Scholar 

  7. Fertassi MA, Alali KT, Liu Q, Li R, Liu P, Liu J, Liu L, Wang J. Catalytic effect of CuO nanoplates, graphene (G)/CuO nanocomposite and Al/G/CuO composite on the thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6:74155–7.

    CAS  Google Scholar 

  8. Paulose S, Raghavan R, George BK. Functionalized white graphene–Copper oxide nanocomposite: synthesis, characterization and application as catalyst for thermal decomposition of ammonium perchlorate. J Colloid Interface Sci. 2017;494:64–73.

    CAS  PubMed  Google Scholar 

  9. Dey A, Athar J, Varma P, Prasant H, Sikder AK, Chattopadhyay S. Graphene–iron oxide nano composite (GINC): an efficient catalyst for ammonium perchlorate (AP) decomposition and burn rate enhancer for AP based composite propellant. RSC Adv. 2015;5:1950–60.

    CAS  Google Scholar 

  10. Zhang Y, Meng C. Facile fabrication of Fe3O4 and Co3O4 microspheres and their influence on the thermal decomposition of ammonium perchlorate. J Alloys Compd. 2016;674:259–65.

    CAS  Google Scholar 

  11. Dey A, Nangare V, More PV, Khan MAS, Khanna PK, Sikder AK, Chattopadhyay S. A graphene titanium dioxide nanocomposite (GTNC): one pot green synthesis and its application in a solid rocket propellant. RSC Adv. 2015;5:63777–9.

    CAS  Google Scholar 

  12. Huang C, Liu Q, Fan W, Qiu X. Boron nitride encapsulated copper nanoparticles: a facile one-step synthesis and their effect on thermal decomposition of ammonium perchlorate. Sci Rep. 2015. https://doi.org/10.1038/srep16736.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang Y, Zhu J, Yang X, Lu L, Wang X. Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2005;437:106–9.

    CAS  Google Scholar 

  14. Xu H, Wang X, Zhang L. Selective preparation of nanorods and micro-octahedrons of Fe2O3 and their catalytic performances for thermal decomposition of ammonium perchlorate. Powder Technol. 2008;185:176–80.

    CAS  Google Scholar 

  15. Perkas N, Koltypin Y, Palchik O, Gedanken A, Chandrasekaran S. Oxidation of cyclohexane with nanostructured amorphous catalysts under mild conditions. Appl Catal A. 2001;209:125–30.

    CAS  Google Scholar 

  16. Srivastava DN, Perkas N, Gedanken A, Felner I. Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties. J Phys Chem B. 2002;106:1878–83.

    CAS  Google Scholar 

  17. Kuai L, Geng J, Chen C, Kan E, Liu Y, Wang Q, Geng B. A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew Chem Int Ed. 2014;126:7677–81.

    Google Scholar 

  18. Kesavan V, Dhar D, Koltypin Y, Perkas N, Palchik O, Gedanken A, Chandrasekaran S. Nanostructured amorphous metals, alloys, and metal oxides as new catalysts for oxidation. Pure Appl Chem. 2001;73:85–7.

    CAS  Google Scholar 

  19. Frenzer G, Maier WF. Amorphous porous mixed oxides: sol–gel ways to a highly versatile class of materials and catalysts. Annu Rev Mater Res. 2006;36:281–331.

    CAS  Google Scholar 

  20. Machala L, Zboril R, Gedanken A. Amorphous iron(III) oxides—a review. J Phys Chem B. 2007;111:4003–16.

    CAS  PubMed  Google Scholar 

  21. Shafi KVPM, Koltypin Y, Gedanken A. Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem B. 1997;101:6409–14.

    CAS  Google Scholar 

  22. Liao X, Zhu J, Zhong W, Chen H. Synthesis of amorphous Fe2O3 nanoparticles by microwave irradiation. Mater Lett. 2001;50:341–6.

    CAS  Google Scholar 

  23. Adschiri T, Hakuta Y, Sue K, Arai K. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. J Nanopart Res. 2001;3:227–9.

    CAS  Google Scholar 

  24. Gopalakrishnan M, Jeevaraj AKS. Template-free solvothermal synthesis of copper oxide nanorods. Mater Sci Semicond Process. 2014;26:512–4.

    CAS  Google Scholar 

  25. Ghosh M, Rao CNR. Solvothermal synthesis of CdO and CuO nanocrystals. Chem Phys Lett. 2004;393:493–5.

    CAS  Google Scholar 

  26. Ramasami AK, Reddy MV, Balakrishna GR. Combustion synthesis and characterization of NiO nanoparticles. Mater Sci Semicond Process. 2015;40:194–9.

    CAS  Google Scholar 

  27. Manikandan A, Durka M, Antony SA. Hibiscus rosa-sinensis leaf extracted green methods, magneto-optical and catalytic properties of spinel CuFe2O4 nano- and microstructures. J Inorg Organomet Polym Mater. 2015;25:1019–31.

    CAS  Google Scholar 

  28. Mahdavi M, Namvar F, Ahmad MB, Mohamad R. Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules. 2013;18:5954–64.

    PubMed  PubMed Central  Google Scholar 

  29. Yew YP, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Lee KX. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Res Lett. 2016;11:1–2.

    CAS  Google Scholar 

  30. Buazar F, Baghlani-Nejazd MH, Badri M, Kashisaz M, Khaledi-Nasab A, Kroushawi F. Facile one-pot photosynthesis of magnetic nanoparticles using potato extract and their catalytic activity. Starch-Starke. 2016;68:796–9.

    CAS  Google Scholar 

  31. Buazar F, Bavi M, Kroushawi F, Halvani M, Khaledi-Nasab A, Hossieni SA. Potato extract as reducing agent and stabiliser in a facile green one-step synthesis of ZnO nanoparticles. J Exp Nanosci. 2016;11:175–84.

    CAS  Google Scholar 

  32. Lu W, Shen Y, Xie A, Zhang W. Green synthesis and characterization of superparamagnetic Fe3O4 nanoparticles. J Magn Magn Mater. 2010;322:1828–33.

    CAS  Google Scholar 

  33. Sharma JK, Srivastava P, Singh G, Akhtar MS, Ameen S. Catalytic thermal decomposition of ammonium perchlorate and combustion of composite solid propellants over green synthesized CuO nanoparticles. Thermochim Acta. 2015;614:110–6.

    CAS  Google Scholar 

  34. Patel VK, Sundriyal P, Bhattacharya S. Aloe-vera vs poly(ethylene)glycol-based synthesis and relative catalytic activity investigations of ZnO nanorods in thermal decomposition of potassium perchlorate. Part Sci Technol. 2017;35:361–8.

    CAS  Google Scholar 

  35. Kavyashree D, Nagabhushana H, Kumari RA, Basavaraj RB, Suresh D, Prasad BD, Sharma SC. Aloe vera mediated hydrothermal synthesis of reduced grapheme oxide decorated ZnO nanocomposite: luminescence and antioxidant properties. Eur Phys J Plus. 2016;131:1–5.

    CAS  Google Scholar 

  36. Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promark V, Seraphin S. Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. Optoelectron Adv Mater. 2008;2:161–5.

    CAS  Google Scholar 

  37. Juibari NM, Eslami A. Synthesis of nickel oxide nanorods by Aloe vera leaf extract Study of its electrochemical properties and catalytic effect on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7640-x.

    Article  Google Scholar 

  38. Juibari NM, Eslami A. Green synthesis of ZnCo2O4 nanoparticles by Aloe albiflora extract and its application as catalyst on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6613-9.

    Article  Google Scholar 

  39. Juibari NM, Eslami A. MnCo2O4 nanoparticles with excellent catalytic activity in thermal decomposition of ammonium perchlorate. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7217-8.

    Article  Google Scholar 

  40. Sasikala S, Ganesh V, Seong JK. Sol–Gel mediated greener synthesis of γ-Fe2O3 nanostructures for the selective and sensitive determination of uric acid and dopamine. Catalysts. 2018. https://doi.org/10.3390/catal8110512.

    Article  Google Scholar 

  41. Yifu Z, Xinghai L, Jiaorong N, Lei Y, Yalan Z, Chi H. Improve the catalytic activity of α-Fe2O3 particles in decomposition of ammonium perchlorate by coating amorphous carbon on their surface. J Solid State Chem. 2011;184:387–90.

    Google Scholar 

  42. Yuan Y, Jiang W, Wang Y, Shen P, Li F, Li P, Zhao F, Gao H. Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci. 2014;303:354–6.

    CAS  Google Scholar 

  43. Song L, Zhang S, Chen B, Ge J, Jia X. A hydrothermal method for preparation of α-Fe2O3 nanotubes and their catalytic performance for thermal decomposition of ammonium perchlorate. J Colloids Surf A Physicochem Eng Asp. 2010;360:1–5.

    CAS  Google Scholar 

  44. Araujo AS, Fernandes VJ, Golito I, Zinner LB. Evaluation of the relative acid strength of cerium and calcium exchanged Y zeolite by TG and DSC. Thermochim Acta. 1993;223:129–34.

    CAS  Google Scholar 

  45. ASTM Standard test method for decomposition kinetics by thermogravimetry using the Ozawa/Flynn/Wall method, designation: E1641-16.

  46. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  47. Gao L, Hu H, Li G, Zhu Q, Yu Y. Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale. 2014;6:6463–5.

    CAS  PubMed  Google Scholar 

  48. Xing W, Li F, Yan Z, Lu GQ. Synthesis and electrochemical properties of mesoporous nickel oxide. J Power Sources. 2004;134:324–7.

    CAS  Google Scholar 

  49. Fuertes AB, Alvarez D, Rubiera F, Pis JJ, Marbán G, Palacos JM. Surface area and pore size changes during sintering of calcium oxide particles. Chem Eng Commun. 1991;109:73–6.

    CAS  Google Scholar 

  50. Guo Z, Shin K, Karki AB, Young DP, Kaner RB, Hahn HT. Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanopart Res. 2009;11:1441–52.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director, VSSC, Deputy Director VSSC (PCM) and colleagues in Analytical and Spectroscopy Division, VSSC for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Raghavan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrababu, P., Cheriyan, S. & Raghavan, R. Aloe vera leaf extract-assisted facile green synthesis of amorphous Fe2O3 for catalytic thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 139, 89–99 (2020). https://doi.org/10.1007/s10973-019-08376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08376-5

Keywords

Navigation