Skip to main content
Log in

Kinetic study of carbothermal reduction of zirconia under vacuum condition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, formation mechanism and kinetics of vacuum carbothermal synthesis of zirconium carbide using zirconium acetate and sucrose are discussed. The study of non-isothermal reduction was conducted by thermogravimetry analysis and heating the samples in argon and vacuum conditions up to 1773 K, and then the heat exchange values of reactions were calculated. Isothermal formation mechanism of carbide phase was investigated by heating the samples at 1473 K and 1673 K in argon and vacuum atmospheres followed by X-ray diffraction and quantitative phase analysis. Results showed that in non-isothermal state, the carbothermal reduction of zirconia is a heterogeneous reaction with multiple steps. For isothermal reaction, the kinetic parameters such as activation energy and pre-exponential factor were calculated as 70.56 kJ mol−1 and 11.22 × 10−2 S−1, respectively. It was presented that the activation energy value extracted from isothermal reaction is completely in accordance with the final step of non-isothermal results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

R :

Gas constant (8.314 J mol−1 K−1)

α :

Extent of reaction

m 0 :

Initial sample mass (g)

m T :

Final sample mass (g)

\({m_{{\text{Zr}}{{\text{O}}_2}}}\) :

123.218 g mol−1

A :

Pre-exponential factor (S−1)

E :

Activation energy

\({ \ln }\left( {\frac{{{\text{g}}\left( \alpha \right)}}{{T^{2} }}} \right)\) :

Effective rate constant

I :

Peak intensity

I n :

Peak intensity in nth step

h(p):

Pressure dependence function

P eq :

Equilibrium vapor pressure

m c :

12.01 g mol−1

α′:

\(\frac{{{\text{d}}\alpha }}{{{\text{d}}T}}\)

T :

Temperature (K)

f(α):

Differential reaction model contracting sphere: \(3(1 - \alpha )^{2/3}\)

g(α):

Integral reaction model contracting sphere: \(1 - (1 - \alpha )^{1/3}\)

β :

Heating rate (10 K min−1)

t :

Time (s)

2θ o :

Initial 2θ of (002) ZrC peak

2θ f :

Final 2θ of (002) ZrC peak

\(I_{\text{n}}^{0}\) :

Background intensity of peak in nth step

b :

Constant value between 0.5 and 1.5

P CO :

Partial pressure of CO(g)

References

  1. Fahrenholtz WG, Wuchina EJ, Lee WE, Zhou Y. Ultra-high temperature ceramics: materials for extreme environment applications. USA: Wiley; 2014.

    Book  Google Scholar 

  2. Arianpour F, Golestanifard F, Rezaie HR, Mazaheri M, Celik A, Kara F, Fantozzi G. Processing, phase evaluation and mechanical properties of MoSi2 doped 4TaC-HfC based UHTCs consolidated by spark plasma sintering. Int J Refract Met Hard Mater. 2016;56:1–7.

    Article  CAS  Google Scholar 

  3. Dolle M, Gosset D, Bogicevic C, Karolak F, Simeone D, Baldinozzi G. Synthesis of nanosized zirconium carbide by a sol-gel route. J Eur Ceram Soc. 2007;27:2061–7.

    Article  CAS  Google Scholar 

  4. Stolle S, Gruner W, Pitschke W, Berger LM, Wetzig K. Comparative microscale investigations of the carbothermal synthesis of (Ti, Zr, Si) carbides with oxide intermediates of different volatilities. Int J Refract Met Hard Mater. 2000;18:61–72.

    Article  CAS  Google Scholar 

  5. Shen G, Chen D, Liu Y, Tang K, Qian Y. Synthesis of ZrC hollow nano spheres at low temperature. J Cryst Growth. 2004;262:277–80.

    Article  CAS  Google Scholar 

  6. Zhang MX, Hu QD, Huang B, Li JZ, Li JG. Study of formation behavior of ZrC in the Fe–Zr–C system during combustion synthesis. Int J Refract Met Hard Mater. 2011;29:596–600.

    Article  Google Scholar 

  7. Zhang MX, Huanga B, Hua QD, Lia JG. Study of formation behavior of ZrC in the Cu–Zr–C system during combustion synthesis. Int J Refract Met Hard Mater. 2012;31:230–5.

    Article  CAS  Google Scholar 

  8. Hu Q, Zhang M, Luo P, Song M, Li J. Thermal explosion synthesis of ZrC particles and their mechanism of formation from Al–Zr–C elemental powders. Int J Refract Met Hard Mater. 2012;35:251–6.

    Article  CAS  Google Scholar 

  9. Li J, Fu ZY, Wang WM, Wang H, Lee SH, Niihara K. Preparation of ZrC by self-propagating high-temperature synthesis. Ceram Int. 2010;36:1681–6.

    Article  CAS  Google Scholar 

  10. Combemale L, Leconte Y, Portier X, Herlin-Boime N, Reynaud C. Synthesis of nano sized zirconium carbide by laser pyrolysis route. J Alloys Compd. 2009;483:468–72.

    Article  CAS  Google Scholar 

  11. Ji Z, Ye L, Tao X, Li H, Qiu W, Cai T, Jiang Y, Zhao T. Synthesis of ordered mesoporous ZrC/C nanocomposite via magnesiothermic reduction at low temperature. Mater Lett. 2012;71:88–90.

    Article  CAS  Google Scholar 

  12. Feng L, Lee S, Lee H. Nano-sized zirconium carbide powder: synthesis and densification using a spark plasma sintering apparatus. Int J Refract Met Hard Mater. 2017;64:98–105.

    Article  CAS  Google Scholar 

  13. Koc R. Kinetics and phase evolution during carbothermal synthesis of titanium carbide from carbon-coated titania powder. J Eur Ceram Soc. 1997;17:1309–15.

    Article  CAS  Google Scholar 

  14. Koc R. Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania carbon mixture. J Mater Sci. 1998;33:1049–55.

    Article  CAS  Google Scholar 

  15. Gou H, Zhang G, Hu X, Chou K. Kinetic study on carbothermic reduction of ilmenite with activated carbon. Trans Nonferrous Met Soc China. 2017;27:1856–61.

    Article  Google Scholar 

  16. Kim D, Jeong I, Jung S. Kinetic study on carbothermic reduction of MnO2 with graphite. Ironmaking Steelmaking. 2016;43:526–32.

    Article  CAS  Google Scholar 

  17. Leng Y, Xiea L, Liaoa F, Zhenga J, Li X. Kinetic and thermodynamics studies on the decompositions of Ni3C in different atmospheres. Thermochim Acta. 2008;473:14–8.

    Article  CAS  Google Scholar 

  18. Cetinkaya S, Eroglu S. Comparative kinetic and structural analyses of nanocrystalline WC powder synthesis from pre-reduced W under pure and diluted CH4 atmospheres. Int J Refract Met Hard Mater. 2011;29:214–20.

    Article  CAS  Google Scholar 

  19. Kharatyan SL, Chatilyan HA, Arakelyan LH. Kinetics of tungsten carbidization under non-isothermal conditions. Mater Res Bull. 2008;43:897–906.

    Article  CAS  Google Scholar 

  20. Cairo CA, Florian M, Grac ML, Bressiani JC. Kinetic study by TGA of the effect of oxidation inhibitors for carbon–carbon composite. Mater Sci Eng A. 2003;358:298–303.

    Article  Google Scholar 

  21. Ebrahimi Kahrizsangi R, Amini Kahrizsangi E. Zirconia carbothermal reduction: non-isothermal kinetics. Int J Refract Met Hard Mater. 2009;27:637–41.

    Article  CAS  Google Scholar 

  22. Maitre A, Lefort P. Solid state reaction of zirconia with carbon. Solid State Ionics. 1997;104:109–22.

    Article  CAS  Google Scholar 

  23. Bokstein B. Thermodynamics and kinetics in materials science. Oxford: Oxford University Press; 2005.

    Google Scholar 

  24. Deb P. Kinetics of heterogeneous solid state processes. London: Springer; 2014.

    Book  Google Scholar 

  25. David J, Trolliard G, Gendre M, Maitre A. TEM study of the reaction mechanisms involved in the carbothermal reduction of zirconia. J Eur Ceram Soc. 2013;33:165–79.

    Article  CAS  Google Scholar 

  26. Arianpour F, Kazemi F, Rezaie HR, Asjodi A, Liu J. Nano zirconium carbide powder synthesis via carbothermal route. Defect Diffus Forum. 2013;334–335:381–6.

    Article  Google Scholar 

  27. Ebrahimi Kahrizsangi R, Abbasi MH. Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans Nonferrous Met Soc China. 2008;18:217–21.

    Article  CAS  Google Scholar 

  28. Jerez A, Ramos E, Gaitan M, Veiga ML, Pico C. A method for the kinetic analysis of non-isothermal decomposition reactions of solids. Thermochim Acta. 1987;115:175–80.

    Article  CAS  Google Scholar 

  29. Denisov ET, Sarkisov OM, Likhtenshtein GI. Chemical kinetics: fundamentals and new developments. Moscow: Elsevier; 2003.

    Google Scholar 

  30. Moser G, Tschamber V, Schonnenbeck C, Brillard A, Brilhac JF. Non-isothermal oxidation and kinetic analysis of pure magnesium powder. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7845-z.

    Article  Google Scholar 

  31. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  32. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  33. Aboulkas A, El-Harfi K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale. 2008;25:426–43.

    Article  CAS  Google Scholar 

  34. Jenkins R, Snyder RL. Introduction to X-ray powder diffractometry. Hoboken: Wiley; 1996.

    Book  Google Scholar 

  35. Burnham AK. Global chemical kinetics of fossil fuels: how to model maturation and pyrolysis. New York: Springer; 2017.

    Book  Google Scholar 

  36. HSC Chemistry for Windows-Chemical Reaction and Equilibrium Software, Outokumpu Research Oy, Pori, Finland; 2006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Rezaie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemi, F., Arianpour, F. & Rezaie, H.R. Kinetic study of carbothermal reduction of zirconia under vacuum condition. J Therm Anal Calorim 139, 67–73 (2020). https://doi.org/10.1007/s10973-019-08368-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08368-5

Keywords

Navigation