Skip to main content
Log in

Convective performance and particle effect analysis on aqua-antifreeze based oxomagnesium nanofluids while flowing through a micro-fin tube with twisted tapes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heat transfer and entropy generation analysis upon the single-phase flow of antifreeze and water (50:50) mixture with solution combustion-derived oxomagnesium nanoparticle (volume concentration, φ = 0.05, 0.2, 0.6%) through a micro-fin tube equipped with snug fit twisted tapes (twist ratio, Y = 6, 8, 10) are investigated. The Nusselt number and friction factor enhancement are attributed towards the enhancement in the thermo-physical properties of the nanofluid, micro-fin tube geometry and the twisted tape twist ratio. The maximum Nusselt number, friction factor and performance evaluation criteria are achieved corresponding to Y = 6, φ = 0.6%. At φ = 0.6%, the Bejan number values lesser than 0.5 signify the domination of frictional entropy generation over thermal entropy generation. Therefore, the optimal Reynolds number of 7600, 7900 and 8000 for Y = 10, 8 and 6 is the limit till which the 0.6% concentrated nanofluid is deemed efficient. In addition to this, the nanofluid density measured before and after the test runs signifies the maximum particle loss at 0.6% volume concentration and lower twist ratio due to the spiral and centrifugal effects. The enhanced particle size observed based on the DLS measurements taken before and after the fluid flow test runs signifies the impact of centrifugal and spiral flow effects on the fluid molecules. The Nusselt number and friction factor correlations are predicted based on the measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a, b, c, d, z :

Constants of Ravigururajan and Bergles [42] friction factor equation

Be :

Bejan number \(\left( {\frac{{s_{\text{ht}} }}{{s_{\text{ht}} + s_{\text{f}} }}} \right)\)

C p :

Specific heat (J kg−1 K−1)

CorrT:

Corrugated tube

D :

Diameter of the tube (m)

e :

Fin height (m)

EPEF:

Entropy Performance Evaluation Factor \(\left( {\frac{{Nu_{\text{enh}} \dot{Q}}}{{\left( {s_{\text{ht}} + s_{\text{f}} } \right)T}}} \right)\)

f :

Friction factor \(\left( {\frac{2D \Delta P}{{L\rho U^{2} }}} \right)\)

h :

Heat transfer coefficient (W m−2 K−1)

H :

Tape width (m)

I :

Current (A)

IEP:

Iso-electric point

k :

Thermal conductivity (W m−1 K−1)

L :

Length of the tube (m)

MFT:

Micro-fin tube

Mo :

Mouromtseff number \(\frac{{\rho_{\text{nf}}^{0.9} k_{\text{nf}}^{0.67} C_{\text{pnf}}^{0.33} }}{{\mu_{\text{nf}}^{0.47} }}\)

\(\dot{m}\) :

Mass flow rate (kg s−1)

N :

Number of fins

Nu :

Nusselt number \(\left( {\frac{hD}{k}} \right)\)

PEC:

Performance evaluation criteria \(\frac{{\left( {Nu_{\text{enh}} /Nu} \right)}}{{\left( {f_{\text{enh}} /f} \right)^{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}} \right)}} }}\)

p :

Fin pitch (m)

Pr :

Prandtl number \(\left( {\frac{{c_{\text{p}} \mu }}{k}} \right)\)

Q :

Heat transfer (W)

Re :

Reynolds number \(\left( {\frac{\rho UD}{\mu }} \right)\)

S :

Perimeter (m)

s :

Entropy generation (W K−1)

t :

Tube thickness (m)

T :

Temperature (°C or K)

TT:

Twisted tape

U :

Fluid velocity (m s−1)

\(\dot{V}\) :

Volume flow rate (m3 s−1)

V :

Voltage (V)

y :

180° Twist pitch (mm)

Y :

Twist ratio (y/H)

α :

Fin apex angle (o)

β :

Fin helix angle (o)

δ :

Tape thickness (mm)

\(\infty\) :

Ambient conditions

μ :

Viscosity (N s m−2)

φ :

Particle volume concentration (%)

ϕ :

Function

ρ :

Density (kg m−3)

\(\Delta P\) :

Pressure difference (bar or N m−2)

\(\Delta T\) :

Temperature difference (°C or K)

ax:

Axial

bf:

Base fluid

c:

Cross-sectional

corr:

Correlation

dim:

Dimensionless

enh:

Enhanced

exp:

Experimental

f:

Friction

fin:

Fin

h:

Hydraulic

ht:

Heat transfer

i:

Inlet

MFT:

Micro-fin tube

nf:

Nanofluid

o:

Outlet

PT:

Plain tube

r:

Relative

sw:

Swirl

w:

Wall surface

References

  1. Mwesigye A, Meyer JP. Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios. Appl Energy. 2017;193:393–413. https://doi.org/10.1016/j.apenergy.2017.02.064.

    Article  CAS  Google Scholar 

  2. Aguilar T, Navas J, Sánchez-Coronilla A, Martín EI, Gallardo JJ, Martínez-Merino P, et al. Investigation of enhanced thermal properties in NiO-based nanofluids for concentrating solar power applications: a molecular dynamics and experimental analysis. Appl Energy. 2018;211:677–88. https://doi.org/10.1016/j.apenergy.2017.11.069.

    Article  CAS  Google Scholar 

  3. Zeng J, Xuan Y. Enhanced solar thermal conversion and thermal conduction of MWCNT-SiO2/Ag binary nanofluids. Appl Energy. 2018;212:809–19. https://doi.org/10.1016/j.apenergy.2017.12.083.

    Article  CAS  Google Scholar 

  4. Copetti JB, Macagnan MH, de Souza D, Oliveski RDC. Experiments with micro-fin tube in single phase. Int J Refrig. 2004;27(8):876–83. https://doi.org/10.1016/j.ijrefrig.2004.04.015.

    Article  CAS  Google Scholar 

  5. Chamra LM, Webb RL, Randlett MR. Advanced micro-fin tubes for evaporation. Int J Heat Mass Transf. 1996;39(9):1827–38. https://doi.org/10.1016/0017-9310(95)00276-6.

    Article  CAS  Google Scholar 

  6. Li XW, Meng JA, Li ZX. Experimental study of single-phase pressure drop and heat transfer in a micro-fin tube. Exp Therm Fluid Sci. 2007;32(2):641–8. https://doi.org/10.1016/j.expthermflusci.2007.08.005.

    Article  CAS  Google Scholar 

  7. Eiamsa-ard S, Wongcharee K. Convective heat transfer enhancement using Ag–water nanofluid in a micro-fin tube combined with non-uniform twisted tape. Int J Mech Sci. 2018;146–147:337–54. https://doi.org/10.1016/j.ijmecsci.2018.07.040.

    Article  Google Scholar 

  8. Al-Fahed SF, Ayub ZH, Al-Marafie AM, Soliman BM. Heat transfer and pressure drop in a tube with internal microfins under turbulent water flow conditions. Exp Therm Fluid Sci. 1993;7(3):249–53. https://doi.org/10.1016/0894-1777(93)90008-7.

    Article  CAS  Google Scholar 

  9. Zhang X, Liu Z, Liu W. Numerical studies on heat transfer and flow characteristics for laminar flow in a tube with multiple regularly spaced twisted tapes. Int J Therm Sci. 2012;58:157–67. https://doi.org/10.1016/j.ijthermalsci.2012.02.025.

    Article  Google Scholar 

  10. Guo J, Fan A, Zhang X, Liu W. A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape. Int J Therm Sci. 2011;50(7):1263–70. https://doi.org/10.1016/j.ijthermalsci.2011.02.010.

    Article  Google Scholar 

  11. Zhang X, Liu Z, Liu W. Numerical studies on heat transfer and friction factor characteristics of a tube fitted with helical screw-tape without core-rod inserts. Int J Heat Mass Transf. 2013;60:490–8. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.041.

    Article  Google Scholar 

  12. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22. https://doi.org/10.1007/s10973-017-6372-7.

    Article  CAS  Google Scholar 

  13. Hosseinnejad R, Hosseini M, Farhadi M. Turbulent heat transfer in tubular heat exchangers with twisted tape. J Therm Anal Calorim. 2019;135(3):1863–9. https://doi.org/10.1007/s10973-018-7400-y.

    Article  CAS  Google Scholar 

  14. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60. https://doi.org/10.1007/s10973-018-7070-9.

    Article  CAS  Google Scholar 

  15. MageshBabu D, Nagarajan PK, Sathyamurthy R, Suseel Jai Krishnan S. Enhancing the thermal performance of Al2O3/DI water nanofluids in micro-fin tube equipped with straight and left-right twisted tapes in turbulent flow regime. Exp Heat Transf. 2017;30(4):267–83. https://doi.org/10.1080/08916152.2016.1238857.

    Article  CAS  Google Scholar 

  16. Nagarajan PK, Mukkamala Y, Sivashanmugam P. Studies on heat transfer and friction factor characteristics of turbulent flow through a micro-finned tube fitted with left-right inserts. Appl Therm Eng. 2010;30(13):1666–72. https://doi.org/10.1016/j.applthermaleng.2010.03.025.

    Article  Google Scholar 

  17. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23. https://doi.org/10.1007/s10973-018-7093-2.

    Article  CAS  Google Scholar 

  18. Eiamsa-Ard S, Wongcharee K. Heat transfer characteristics in micro-fin tube equipped with double twisted tapes: effect of twisted tape and micro-fin tube arrangements. J Hydrodyn Ser B. 2013;25(2):205–14. https://doi.org/10.1016/S1001-6058(13)60355-8.

    Article  Google Scholar 

  19. Suseel Jai Krishnan S, Nagarajan PK. Convective thermal performance and entropy generation analysis on Solution Combustion synthesis derived magnesia nano-dispersion flow susceptible by a micro-fin tube. Exp Therm Fluid Sci. 2019;101:1–15. https://doi.org/10.1016/j.expthermflusci.2018.10.002.

    Article  CAS  Google Scholar 

  20. Magesh Babu D, Nagarajan PK, Madhu B, Ravishankar S. Experimental evaluation of friction factor and heat transfer enhancement of twisted tape inserts using TiO2–water nanofluids. J Eng Thermophys. 2017;26(4):567–79. https://doi.org/10.1134/s1810232817040117.

    Article  CAS  Google Scholar 

  21. Wongcharee K, Eiamsa-ard S. Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis. Int Commun Heat Mass Transf. 2011;38(6):742–8. https://doi.org/10.1016/j.icheatmasstransfer.2011.03.011.

    Article  CAS  Google Scholar 

  22. Dabiri E, Bahrami F, Mohammadzadeh S. Experimental investigation on turbulent convection heat transfer of SiC/W and MgO/W nanofluids in a circular tube under constant heat flux boundary condition. J Therm Anal Calorim. 2018;131(3):2243–59. https://doi.org/10.1007/s10973-017-6791-5.

    Article  CAS  Google Scholar 

  23. Akbarzadeh M, Rashidi S, Karimi N, Omar N. First and second laws of thermodynamics analysis of nanofluid flow inside a heat exchanger duct with wavy walls and a porous insert. J Therm Anal Calorim. 2019;135(1):177–94. https://doi.org/10.1007/s10973-018-7044-y.

    Article  CAS  Google Scholar 

  24. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018;134(3):2295–303. https://doi.org/10.1007/s10973-018-7866-7.

    Article  CAS  Google Scholar 

  25. Monfared M, Shahsavar A, Bahrebar MR. Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle. J Therm Anal Calorim. 2019;135(2):1521–32. https://doi.org/10.1007/s10973-018-7708-7.

    Article  CAS  Google Scholar 

  26. Suseel Jai Krishnan S, Nagarajan PK, Mamat R, Vimaladevi L, Ravishankar S. Synthesis, characterisation and thermo-physical investigations on magnesia nanoparticles dispersed in ethylene glycol-DI water (50:50). IET Micro Nano Lett. 2018;13(3):335–40. https://doi.org/10.1049/mnl.2017.0484.

    Article  CAS  Google Scholar 

  27. Thermowells PTC 19.3 TW. ASME; 2010. p. 52.

  28. Standards of the Tubular Exchanger Manufacturers Association. 9th edn. 20 Nov 2007.

  29. Wongsa-ngam J, Nualboonrueng T, Wongwises S. Performance of smooth and micro-fin tubes in high mass flux region of R-134a during evaporation. Heat Mass Transf. 2004;40(6):425–35. https://doi.org/10.1007/s00231-002-0397-5.

    Article  CAS  Google Scholar 

  30. Manglik RM, Bergles AE. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part I—laminar flows. J Heat Transf. 1993;115(4):881–9. https://doi.org/10.1115/1.2911383.

    Article  CAS  Google Scholar 

  31. Bejan A. Heat Transfer. New York: WileyInc.; 1993.

    Google Scholar 

  32. White FM. Fluid mechanics. 2nd ed. New York: McGraw-Hill; 1986.

    Google Scholar 

  33. Azmi WH, Abdul Hamid K, Usri NA, Mamat R, Mohamad MS. Heat transfer and friction factor of water and ethylene glycol mixture based TiO2 and Al2O3 nanofluids under turbulent flow. Int Commun Heat Mass Transf. 2016;76:24–32. https://doi.org/10.1016/j.icheatmasstransfer.2016.05.010.

    Article  CAS  Google Scholar 

  34. Prasher R, Song D, Wang J, Phelan P. Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett. 2006;89(13):133108.

    Article  CAS  Google Scholar 

  35. Mouromtseff I. Water and forced-air cooling of vacuum tubes nonelectronic problems in electronic tubes. Proc IRE. 1942;30(4):190–205.

    Article  Google Scholar 

  36. Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng. 1976;16:359–68.

    Google Scholar 

  37. Filonienko GK. Friction factor for turbulent pipe flow. Teploenergetika. 1954;1(4):40–4.

    Google Scholar 

  38. Bas H, Ozceyhan V. Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall. Exp Therm Fluid Sci. 2012;41:51–8. https://doi.org/10.1016/j.expthermflusci.2012.03.008.

    Article  Google Scholar 

  39. Manglik RM, Bergles AE. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part II—transition and turbulent flows. J Heat Transfer. 1993;115(4):890–6. https://doi.org/10.1115/1.2911384.

    Article  CAS  Google Scholar 

  40. Bharadwaj P, Khondge AD, Date AW. Heat transfer and pressure drop in a spirally grooved tube with twisted tape insert. Int J Heat Mass Transf. 2009;52(7):1938–44. https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.038.

    Article  CAS  Google Scholar 

  41. Meyer JP, Olivier JA. Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: part I - Adiabatic pressure drops. Int J Heat Mass Transf. 2011;54(7):1587–97. https://doi.org/10.1016/j.ijheatmasstransfer.2010.11.027.

    Article  Google Scholar 

  42. Ravigururajan TS, Bergles AE. Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes. Exp Therm Fluid Sci. 1996;13(1):55–70. https://doi.org/10.1016/0894-1777(96)00014-3.

    Article  CAS  Google Scholar 

  43. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11(2):151–70. https://doi.org/10.1080/08916159808946559.

    Article  CAS  Google Scholar 

  44. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7. https://doi.org/10.1016/S0017-9310(99)00369-5.

    Article  CAS  Google Scholar 

  45. Suseel Jai Krishnan S, Nagarajan PK, Mamat R, Vimaladevi L, Ravishankar S. Synthesis, characterisation and thermo-physical investigations on magnesia nanoparticles dispersed in ethylene glycol-DI water (50:50). IET Micro Nano Lett. 2018;13(3):335–40. https://doi.org/10.1049/mnl.2017.0484.

    Article  CAS  Google Scholar 

  46. Mehrali M, Sadeghinezhad E, Rosen MA, Tahan Latibari S, Mehrali M, Metselaar HSC, et al. Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids. Exp Therm Fluid Sci. 2015;68:100–8. https://doi.org/10.1016/j.expthermflusci.2015.03.012.

    Article  CAS  Google Scholar 

  47. Bejan A. Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes. 1st ed. New York, NY: CRC Press; 1995.

    Google Scholar 

  48. Wongcharee K, Eiamsa-ard S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transf. 2012;39(2):251–7. https://doi.org/10.1016/j.icheatmasstransfer.2011.11.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Centre of Excellence in Energy and Nanotechnology (CEENT), S. A. Engineering College, Chennai, Tamil Nadu, India, partially funded by the Department of Science & Technology—Science and Engineering Research Board (Grant No.SB/FTP/ETA-444/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Suseel Jai Krishnan.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suseel Jai Krishnan, S., Nagarajan, P.K. Convective performance and particle effect analysis on aqua-antifreeze based oxomagnesium nanofluids while flowing through a micro-fin tube with twisted tapes. J Therm Anal Calorim 138, 1175–1191 (2019). https://doi.org/10.1007/s10973-019-08336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08336-z

Keywords

Navigation